Director, Hunter James Kelly Research Institute; Professor of Neurology and Biochemistry
Jacobs School of Medicine & Biomedical Sciences
Developmental Neurology; Neurology
My laboratory has a longstanding interest in myelin and its diseases. Myelin surrounds large axons and permits rapid conduction of signals. It is formed by oligodendrocytes in the central nervous system, and Schwann cells in the peripheral nervous system. During development, these cells migrate with the axons that they will myelinate, and depend on those same axons for appropriate signals to survive and differentiate. Myelin-forming glia coordinately express a unique set of genes encoding myelin structural proteins, and enzymes that synthesize myelin lipids-this coordination is in large part transcriptionally-mediated. Given the unique three dimensional transformation of the cell required for myelination, many of the involved proteins include adhesion among their functions. Therefore, our projects include studies of transcriptional regulation, axonal signals to myelinating glia, the role of adhesion in myelination and the characterization of animal models of human demyelinating diseases.