Faculty Profiles

Michael, Buck
Buck, Michael, PhDAssociate Professor
Email: mjbuck@buffalo.edu
Phone: (716) 881-7569

Specialty/Research Focus:
Bioinformatics; Genomics and proteomics; Molecular and Cellular Biology; Molecular genetics; Gene Expression; Transcription and Translation

Research Summary:
Instructions controlling cellular functions are contained within DNA that is wrapped and packaged around proteins into chromatin. Chromatin can be modified in response to the environment and these modifications can be passed onto their daughter cells. These modifications act as a cellular memory and are known as epigenetic modifications. Changes in epigenetic modifications are essential players in many disease pathways including: cancer, diabetes, obesity, and autism. Dr. Buck’s research is focused on uncovering how epigenetic changes redirect regulatory proteins and how regulatory proteins read epigenetic modifications. Dr. Buck’s laboratory uses multiple model systems to uncover fundamental biological principles which are subsequently translated to the study of human disease. Epigenomics and Cancer Epigenetic alterations have been associated with cancer-specific expression differences in development of human tumors. The ability to recognize and detect the progression of epigenetic events occurring during tumorigenesis is critical to developing strategies for therapeutic intervention. Key epigenetic alterations, leading to silencing or activation, are associated with changes in nucleosome occupancy. We use chromatin assays (FAIRE-seq, ATAC-seq, MNase-seq, and ChIP-seq) to examine cancer epigenomes from patient samples and cell line models. Transcription factor binding specificity to chromatin. To understand normal developmental processes and disease manifestation and progression we must understand the mechanisms regulating the essential first step of gene activation, transcription factor binding at regulatory regions. Using the developmental transcription factor TP63 we have begun to uncover the rules dictating p63 binding to chromatin. Our findings demonstrated that p63 functions has a pioneer transcription factor that can target it bindings site in closed inaccessible genomic locations. Current in vitro and in vivo studies are beginning to define the how nucleosome position and histone modifications regulate p63 binding. Microbiota in human health Our bodies are populated by a diverse and complex population of thousands of microbes, mostly bacteria, but also viruses, fungi and archaea, termed the human microbiota. This co-inhabiting microbial ecosystem has been associated with various human disease including colon cancer, diabetes, periodontal disease, and others. To understand how the microbiota is affecting human health we are participating in a large epidemiological study examining human oral microbiota samples. We have developed robust and reproducible high-throughput approaches to examine thousands of samples and we are currently defining causual relationships between the microbiota and human health.

David, Dietz
Dietz, David, PhDAssociate Professor; Interim Chair
Email: ddietz@buffalo.edu
Phone: 716-829-2071

Specialty/Research Focus:
Addictions; Drug abuse; Behavioral pharmacology; Cytoskeleton and cell motility; Gene Expression; Gene therapy; Neurobiology; Neuropharmacology; Signal Transduction; Transcription and Translation

Research Summary:
Drug addiction is a disabling psychiatric disease leading to enormous burdens for those afflicted, their friends and family, as well as society as a whole. Indeed, the addict will seek out and use illicit substances even in the face of severe negative financial, family and health consequences. It is believed that drugs of abuse ultimately “hijack” the reward circuitry of the CNS leading to cellular adaptations that facilitate the transition to the “addicted” state As is the case with both rodent models of drug taking, and well as throughout the global human population, not all individuals exposed to drugs of abuse will meet the classical definition of being truly “addicted”. We are looking at how molecular and behavioral plasticity mediates susceptibility to drug abuse and relapse like behaviors.

Arthur, Edelman
Edelman, Arthur, PhDAssociate Professor
Email: aedelman@buffalo.edu
Phone: (716) 829-3491

Specialty/Research Focus:
Oncology; Cell Cycle; Cell growth, differentiation and development; Gene Expression; Molecular Basis of Disease; Molecular and Cellular Biology; Signal Transduction; Transcription and Translation

Research Summary:
Protein phosphorylation is an essential mechanism by which intercellular signals regulate specific intracellular events. Protein kinases, the enzymes catalyzing protein phosphorylation reactions, represent a major superfamily of genes, collectively representing 2% of the protein coding potential of the human genome. Current projects in Dr. Edelman‘s lab are devoted to the role of protein kinases in prostate and ovarian cancer. These projects utilize a wide range of techniques and involve, collaboration with investigators at Roswell Park Cancer Institute to develop protein kinase-targeted therapies for both types of cancer.

Jian, Feng
Email: jianfeng@buffalo.edu
Phone: (716) 829-2345

Specialty/Research Focus:
Neurology; Neurodegenerative disorders; Pathophysiology; Apoptosis and cell death; Cytoskeleton and cell motility; Molecular and Cellular Biology; Molecular genetics; Neurobiology; Protein Folding; Gene Expression; Transcription and Translation; Signal Transduction; Toxicology and Xenobiotics

Research Summary:
My research is aimed at finding the cause and a cure for Parkinson’s disease. Parkinson’s disease (PD) is defined by a characteristic set of locomotor symptoms (rest tremor, rigidity, bradykinesia and postural instability) that are believed to be caused by the selective loss of dopaminergic (DA) neurons in substantia nigra. The persistent difficulties in using animals to model this human disease suggest that human nigral dopaminergic neurons have certain vulnerabilities that are unique to our species. One of our unique features is the large size of the human brain (1350 grams on average) relative to the body. A single nigral dopaminergic neuron in a rat brain (2 grams) has a massive axon arbor with a total length of 45 centimeters. Assuming that all mammalian species share a similar brain wiring plan, we can estimate (using the cube root of brain weight) that a single human nigral dopaminergic neuron may have an axon with gigantic arborization that totals 4 meters. Another unique feature of our species is our strictly bipedal movement, which is affected by Parkinson’s disease, in contrast to the quadrupedal movement of almost all other mammalian species. The much more unstable bipedal movement may require more dopamine, which supports the neural computation necessary for movement. The landmark discovery of human induced pluripotent stem cells (iPSC) made it possible to generate patient-specific human midbrain dopaminergic neurons to study Parkinson’s disease. A key problem for dopaminergic neurons is the duality of dopamine as a signal required for neural computation and a toxin as its oxidation produces free radicals. Our study using iPSC-derived midbrain dopaminergic neurons from PD patients with parkin mutations and normal subjects shows that parkin sustains this necessary duality by maintaining the precision of the signal while suppressing the toxicity. Mutations of parkin cause increased spontaneous release of dopamine and reduced dopamine uptake, thereby disrupting the precision of dopaminergic transmission. On the other hand, transcription of monoamine oxidase is greatly increased when parkin is mutated. This markedly increases dopamine oxidation and oxidative stress. These phenomena have not been seen in parkin knockout mice, suggesting the usefulness of parkin-deficient iPSC-derived midbrain DA neurons as a cellular model for Parkinson’s disease. Currently, we are using iPS cells and induced DA neurons to expand our studies on parkin to idiopathic Parkinson’s disease. We are also utilizing the molecular targets identified in our studies to find small-molecule compounds that can mimic the beneficial functions of parkin. The availability of human midbrain DA neurons should significantly speed up the discovery of a cure for Parkinson’s disease.

Lee Ann, Garrett-Sinha
Garrett-Sinha, Lee Ann, PhDAssociate Professor
Email: leesinha@buffalo.edu
Phone: (716) 881-7995

Specialty/Research Focus:
Autoimmunity; Cell growth, differentiation and development; Gene Expression; Immunology; Molecular and Cellular Biology; Molecular genetics; Signal Transduction; Transcription and Translation; Transgenic organisms

Stanley, Halvorsen
Halvorsen, Stanley, PhDAssociate Professor
Email: stanh@buffalo.edu
Phone: (716) 829-2651

Specialty/Research Focus:
Molecular and Cellular Biology; Neurodegenerative disorders; Transcription and Translation; Signal Transduction; Toxicology and Xenobiotics

Research Summary:
My lab studies the receptor signaling mechanisms for a family of neurotrophic factors that includes ciliary neurotrophic factor (CNTF), leptin, interferon gamma, and cardiotrophin-1.  These factors use the Jak/STAT pathway to regulate neuronal survival, development and response to trauma. Our interests are in how activity of the receptors and their pathway components are regulated.  Currently this has focused on the impact of cellular oxidative stress on the inhibition of Jak tyrosine kinase activity. Increases in oxidative stress in neurons result in the blockade of not only CNTF family factor effects, but of many other cytokines that also use the Jak/STAT pathway for signaling such as interferons and interleukins. Non-nerve cells appear resistant to these effects of oxidative stress. Ongoing projects include testing the theory that environmental contaminants known to increase oxidative stress in cells may promote neurodegenerative diseases by inhibiting growth factor signaling.  We have been studying the effects of certain heavy metals (cadmium & mercury) and pesticides (e.g. rotenone) on nerve cells in culture to determine the molecular basis for Jak inhibition. Another examines a possible role of oxidative stress in obesity.  This study tests the hypothesis that the loss of the ability of the hormone leptin to regulate metabolism and appetite during obesity is a result of oxidative reactions that inhibit Jak-mediated signaling in the hypothalamus and other brain regions.

Xiuqian, Mu
Mu, Xiuqian, MD, PhDAssociate Professor
Email: xmu@buffalo.edu
Phone: 716-881-7463

Specialty/Research Focus:
Bioinformatics; Cell growth, differentiation and development; Gene Expression; Genomics and proteomics; Molecular genetics; Stem Cells; Transcription and Translation; Transgenic organisms; Vision science

Research Summary:
We are interested in the fundamental mechanisms underlying the shift of cellular states from progenitors to fully functional mature cell types along individual cell lineages during development. We address this issue by studying cell fate specification and differentiation in the developing neural retina. Our efforts are on identifying key regulators, uncovering their roles in individual lineages, and understanding how they carry out these roles. Current projects are emphasized on how transcription factors influence the epigenetic landscape along the retinal ganglion cell lineage. We conduct our research using a combinatorial approach encompassing genetics, molecular biology, genomics, single cell analysis and bioinformatics.

Alfred, Ponticelli
Ponticelli, Alfred, PhDAssociate Professor
Email: asp@buffalo.edu
Phone: (716) 829-2473

Specialty/Research Focus:
Gene Expression; Molecular Basis of Disease; Molecular and Cellular Biology; Molecular genetics; Protein Function and Structure; Transcription and Translation

Research Summary:
Our laboratory utilizes combined genetic, biochemical and molecular biological approaches to investigate the molecular mechanisms involved in the initiation and regulation of eukaryotic transcription. Previous work in our laboratory utilizing both the budding yeast Saccharomyces cerevisiae and human cells resulted in the identification and biochemical characterization of mutants of nuclear RNA polymerase II (RNAPII) and the general transcription factors TFIIB and TFIIF that coordinately affect transcription start site utilization and transcript elongation. These studies supported a model where yeast and human TFIIF induce global conformational changes in RNAPII that result in structural and functional changes in the polymerase active center. Our current studies are focused on elucidating the mechanisms of kinetoplast transcription by the mitochondrial RNA polymerase of Trypanosoma brucei. T. brucei is a protozoan parasite that is the causative agent of African sleeping sickness (trypanosomiasis) in humans and nagana in animals. Procyclic trypanosomes growing in the midgut of the tsetse fly have a fully functional mitochondrion whereas trypanosomes in the mammalian bloodstream exhibit repressed mitochondrial function. The mitochondrial DNA in trypanosomes is unusual in its structure, comprising a highly catenated network of maxicircles and minicircles termed kinetoplast DNA (kDNA). Surprisingly, very little is known about the cis-acting elements and the trans-acting factors governing the transcription of maxicircles and minicircles. Our objective is to elucidate the mechanisms and regulation of T. brucei kDNA transcription with the ultimate goal of developing therapeutic agents.

David, Poulsen
Poulsen, David, PhDProfessor of Translational Neuroscience
Email: davidpou@buffalo.edu
Phone: (406) 360-0338

Specialty/Research Focus:
Gene Expression; Gene therapy; Molecular Basis of Disease; Molecular and Cellular Biology; Neurobiology; Neuropharmacology; Transcription and Translation

Research Summary:
The efforts in my lab are broadly directed at the translational research of neuroprotective/neurorestorative agents. Specifically, I am focused on the preclinical and clinical development of therapies used to prevent behavioral and cognitive deficits following traumatic brain injury (TBI) and stroke. Over 800,000 patients each year in the US suffer stroke and more than twice that number suffer TBI. Unfortunately there are currently no FDA approved therapies for TBI. TPA is the only therapy approved for stroke but is only applied in about 4% of stroke patients. Furthermore, while TPA is thrombolytic, it does not limit the cascade of pathology initiated by the original occlusion. We have demonstrated that low dose methamphetamine is highly neuroprotective when administered as an acute treatment (within 12 hours after injury) following severe stroke or TBI. We have show that treatment with methamphetamine significantly improve cognition and functional behavior in rat models of these injuries. This effect is primarily mediated through the activation of a dopamine/PI3K/AKT signaling cascade and results in the preservation of primary neurons, and axons, as well as enhanced granule cell neurogenesis and white mater track remodeling. Furthermore, gene expression analysis suggests methamphetamine treatment significantly reduces pro-inflammatory signals and stabilizes the blood brain barrier. These observations led us to further investigate the potential of low dose methamphetamine to reduce or prevent post-traumatic epilepsy. Using long-term video/EEG monitoring, we determined that methamphetamine treatment significantly reduces the incidence and susceptibility to post traumatic epilepsy/seizures after severe TBI in rats. This becomes quite relevant when one considers that many patients with post-traumatic epilepsy are pharmacoresistant. We are continuing to use the TBI model to investigate the causes of post-traumatic epilepsy and test novel therapeutics. In addition to single severe injury, we are also very interested in the effects of repeated mild TBIs. It has now been observed that multiple mild TBIs can cause clinical seizures in about 50% of rats. Therefore, we are also using this model to investigate the causes of post-traumatic epilepsy and potential therapeutic interventions. We have now completed a phase I human trial of methamphetamine in healthy volunteers and are moving to conduct a phase IIa dose escalation safety study in TBI patients. In addition, we are currently using NGS to examine plasma miRNA changes as potential biomarkers and objective measures of activity to support the phase IIa study. In addition to small molecules, my lab also is investigating the development of Adeno- associated virus (AAV) vector based gene therapy approaches to the treatment of CNS injuries such as post-traumatic epilepsy. Specifically, we are using recombinant AAV vectors to modulate targeted gene expression in a temporal, tissue-specific and cell type-specific manner within the CNS.

Christine, Schaner Tooley
Email: ceschane@buffalo.edu
Phone: (716) 829-2978

Specialty/Research Focus:
Cell growth, differentiation and development; DNA Replication, Recombination and Repair; Gene Expression; Molecular and Cellular Biology; Proteins and metalloenzymes; Signal Transduction; Transcription and Translation

Research Summary:
The main goal of my research group is to understand the role of N-terminal methylation on human development and disease. I identified the first eukaryotic N-terminal methyltransferases, NRMT1 and NRMT2, and am now working to identify how these enzymes and this new type of methylation affect cancer development and ageing. Our laboratory has shown that NRMT1 functions as a tumor suppressor in mammary glands, and its loss sensitizes breast cancer cells to DNA damaging chemotherapeutics. We have also created the first NRMT1 knockout mouse and shown it to have developmental defects, as well as, exhibit phenotypes of premature ageing. Currently, we are working to understand the exact biochemical pathways that lead from loss of N-terminal methylation to these phenotypes. We are also studying how post-translational modifications on the N-terminus of proteins may interact and dictate protein function, similar to the post-translational modifications found on histone tails.

Michal, Stachowiak
Stachowiak, Michal, PhDProfessor, Director Molec. and Structural Neurobiol. Gene Therapy Prog. Director Stem Cell SCEF
Email: mks4@buffalo.edu
Phone: (716) 829-3540

Specialty/Research Focus:
Bioinformatics; Cell growth, differentiation and development; Gene Expression; Gene therapy; Genome Integrity; Genomics and proteomics; Molecular Basis of Disease; Molecular and Cellular Biology; Neurobiology; Signal Transduction; Stem Cells; Transcription and Translation

Research Summary:
The long term mission of our laboratory, which I co-direct with Dr. Ewa Stachowiak, is to understand the principles governing molecular control of neural development, the implications for developmental- and aging-related diseases and the wide ranging effects on brain functions including behavior. The main achievement of our program has been the discovery of “Integrative Nuclear FGFR1 Signaling”, INFS a universal signaling mechanism which plays a novel integral role in cell development and complements other universal mechanisms such as mitotic cycle and pluripotency .Based on these revolutionary findings we have formulated a new theory called “Feed-Forward End-Gate Signaling” that explains how epigenetic factors either extracellular like neurotransmitters, hormonal or growth factors or intracellular signaling pathways control developmental gene programs and cellular development. This discovery is a product of our twenty-year multidisciplinary research that has been reported in several peer-reviewed papers in major journals including Proc. Natl. Acad. of Science (USA), Integrative Biology, Molecular Biology of the Cell, Journal of Cell Biology, Journal of Biological Chemistry, Journal of Physical Chemistry (etc.). In addition, we have applied this theory to analyze the etiology of neurodevelopmental /neurodegenerative disorders, and cancer in order to utilize it in new potential therapies. Towards these goals we have employed new technologies for an in vivo gene transfer, developed new transgenic mouse models for Schizophrenia and Parkinson-like diseases and established an interdisciplinary Molecular and Structural Neurobiology and Gene Therapy Program which has o engaged researchers from the different UB departments, other universities in the US as well as foreign institutions including Hannover Medical School (Germany), Gdansk Medical University, and Polish Academy of Science. Detailed research activities and future goals of our research program: 1. Molecular mechanisms controlling development of neural stem and related cells. In studying molecular mechanisms controlling development of neural stem and related cells we have established a novel universal signal transduction mechanism -Feed-Forward-And Gate network module that effects the differentiation of stem cells and neural progenitor cells. In the center of this module is the new gene-controlling mechanism "Integrative Nuclear Fibroblast Growth Factor Receptor-1 (FGFR1) Signaling" (INFS), which integrates diverse epigenetic signals and controls cell progression through ontogenic stages of proliferation, growth, and differentiation. We have shown that, Fibroblast Growth Factor Receptor-1 (FGFR1) a protein previously thought to be exclusively involved with transmembrane FGF signaling, resides in multiple subcellular compartments and is a multifactorial molecule that interacts with diverse cellular proteins In INFS, newly synthesized FGFR1 is released from the endoplasmic reticulum and translocates to the nucleus. In the nucleus, FGFR1 associates with nuclear matrix-attached centers of RNA transcription, interacts directly with transcriptional coactivators and kinases, activates transcription machinery and stimulates chromatin remodeling conducive of elevated gene activities. Our biophotonic experiments revealed that the gene activation by nuclear FGFR1 involves conversion of the immobile matrix-bound and the fast kinetic nucleoplasmic R1 into a slow kinetic chromatin binding population This conversion occurs through FGFR1’s interaction with the CBP and other nuclear proteins. The studies support a novel general mechanism in which gene activation is governed by FGFR1 protein movement and collisions with other proteins and nuclear structures. The INFS governs expression of developmentally regulated genes and plays a key role in the transition of proliferating neural stem cells into differentiating neurons development of glial cells, and can force neoplastic medulloblastoma and neuroblastoma cells to exit the cell cycle and enter a differentiation pathway and thus provides a new target for anti-cancer therapies. In our in vitro studies we are using different types of stem cells cultures, protein biochemistry, biophotonics analyses of protein mobility and interactions [Fluorescence Recovery after Photobleaching (FRAP), Fluorescence Loss In Photobleaching (FLIP), and Fluorescence Resonance Energy Transfer (FRET)] and diverse transcription systems to further elucidate the molecular circuits that control neural development. 2. Analyses of neural stem cell developmental mechanisms in vivo by direct gene transfer into the mammalian nervous system. An understanding of the mechanisms that control the transition of neural stem/progenitor cells (NS/PC) into functional neurons could potentially be used to recruit endogenously-produced NS/PC for neuronal replacement in a variety of neurological diseases. Using DNA-silica based nanoplexes and viral vectors we have shown that neuronogenesis can be effectively reinstated in the adult brain by genes engineered to target the Integrative Nuclear FGF Receptor-1 Signaling (INFS) pathway. Thus, targeting the INFS in brain stem cells via gene transfers or pharmacological activation may be used to induce selective neuronal differentiation, providing potentially revolutionizing treatment strategies of a broad range of neurological disorders. 3. Studies of brain development and neurodevelopmental diseases using transgenic mouse models. Our laboratory is also interested in the abnormal brain development affecting dopamine and other neurotransmitter neurons and its link to psychiatric diseases, including schizophrenia. Changes in FGF and its receptors FGFR1 have been found in the brains of schizophrenia and bipolar patients suggesting that impaired FGF signaling could underlie abnormal brain development and function associated with these disorders. Furthermore the INFS mechanism, integrates several pathways in which the schizophrenia-linked mutations have been reported. To test this hypothesis we engineered a new transgenic mouse model which results from hypoplastic development of DA neurons induced by a tyrosine kinase-deleted dominant negative mutant FGFR1(TK-) expressed in dopamine neurons. The structure and function of the brain’s DA neurons, serotonin neurons and other neuronal systems including cortical and hippocampal neurons are altered in TK- mice in a manner similar to that reported in patients with schizophrenia. Moreover, TK- mice express behavioral deficits that model schizophrenia-like positive symptoms (impaired sensory gaiting), negative symptoms (e.g. low social motivation), and impaired cognition ameliorated by typical or atypical antipsychotics. Supported by the grants from the pharmaceutical industry we are investigating new potential targets for anti-psychotic therapies using our preclinical FGFR1(TK-) transgenic model. Our future goals include in vivo gene therapy to verify whether neurodevelopmental pathologies may be reversed by targeting endogenous brain stem cells. Together with the other researchers of the SUNY Buffalo we have established Western New York Stem Cells Analysis Center in 2010 which includes Stem Cell Grafting and in vivo Analysis core which I direct. Together with Dr. E. Tzanakakis (UB Bioengineering Department) we have written book “ Stem cells- From Mechanisms to Technologies’ (World Scientific Publishing, 2011). Educational Activities and Teaching: I have participated together with the members of our neuroscience community in developing a new Graduate Program in Neuroscience at the SUNY, Buffalo. I am teaching neuroanatomy courses for dental students (ANA811) and for graduate students (NRS524). At present I participate in team-taught graduate courses in Neuroscience and Developmental Neuroscience (NRS 520, 521 and NRS 524). I am serving as a mentor for several undergraduate, graduate (masters and doctoral students) and postdoctoral fellows in the Neuroscience Program, Anatomy and Cell Biology Program and in the IGERT program in the Departments of Chemistry and Engineering. Additionally to mentoring master and Ph.D. students at the UB, I have helped to train graduate students in the University of Camerino (Italy) and Hannover Medical School (Germany). The works of our graduate students have been described in several publications.

Noreen, Williams
Email: nw1@buffalo.edu
Phone: (716) 829-2279

Specialty/Research Focus:
Infectious Disease; Microbiology; Microbial Pathogenesis; Molecular and Cellular Biology; Gene Expression; Transcription and Translation; Protein Function and Structure; RNA; Eukaryotic Pathogenesis

Research Summary:
In my laboratory, we use molecular biological and biochemical approaches to study Trypanosoma brucei, the causative agent of African sleeping sickness, and Trypanosoma cruzi, which causes Chagas disease in South and Central America. Treatment for these diseases is severely limited due to increasing drug resistance and lack of available drugs. The goal of our work is to discover and exploit critical events that occur in the parasite life cycle that may be used to prevent growth or transmission of the parasite. The major project in my laboratory examines the ribosome, the complex molecular machine that drives protein synthesis. While many features of the ribosome and its assembly pathway are conserved in the parasites we study, we have identified features that are very different from the human host. Our laboratory discovered a pair of trypanosome-specific RNA binding proteins, P34 and P37, that are part of a unique preribosomal complex that is essential for ribosomal biogenesis and survival of trypanosomes. This may suggest that the interaction of these proteins with other components of the ribosomal assembly pathway can be developed as targets for chemotherapy. We are developing a high-throughput screen for small molecules that disrupt the complex in trypanosomes and do not harm the human host. My team and I also collaborate with Dr. Joachim Frank at Columbia University on a project to examine the structure of the ribosome and intermediates in the pathway of assembly using cryo-electron microscopy (cryo-EM). These experiments will provide important information about the unique features of the structure and function of the trypanosome ribosome and further our discovery of potential drug targets. In addition, we continue in a long-standing collaboration with Dr. Beatriz Garat at the Universidad de la Républica in Uruguay, examining both DNA and RNA binding proteins which regulate gene expression in Trypanosoma cruzi. The balance of graduate, undergraduate and medical students and postdoctoral researchers I mentor changes from year to year, though the international quality I strive to maintain has distinguished my laboratory for years: I enjoy having students from around the world as part of my research team. I am the course director for, and lecture in Critical Analysis and Eukaryotic Pathogens. I am also the course director for Eukaryotic Gene Expression and the co-course director for Molecular Parasitology. Additionally, I lecture in Microbiology for Undergraduates.