Faculty Profiles

Stephen, Rudin
Rudin, Stephen, PhD, FAAPM, DABR, CHPSUNY Distinguished Professor; Director, Division of Radiation Physics
Email: srudin@buffalo.edu
Phone: (716) 829-5408

Specialty/Research Focus:
Diagnostic Radiology; Neurological Surgery; Neuroradiology - Diagnostic Radiology; Neuroradiology - Radiology; Pediatric Radiology - Radiological Physics; Radiological Physics; Radiology; Vascular and Interventional Radiology

Research Summary:
A SUNY Distinguished Professor & member of the UB faculty for more than 30 years, Dr. Rudin is a world-renowned expert in the field of medical physics. The quintessential interdisciplinary research scientist, Dr. Rudin is an international force in the development of a host of cutting-edge technology & methodology in the area of medical diagnostic & interventional imaging. He has won multiple awards for scientific excellence as well as awards for excellence in design, and is particularly well-known for his work in developing a high resolution x-ray imaging detectors, dose reduction methods, and endovascular devices such as asymmetric stents, work with major theoretical and clinical implications for medical physics, biomedical engineering, and diagnostic radiology, as well as an immediate impact upon patient diagnosis and care, particularly in case of brain and heart treatment. The caliber, significance, and innovation of his research are demonstrated by the numerous grants he has received from the NIH.

Ferdinand, Schweser
Schweser, Ferdinand, PhDAssistant Professor of Neurology and Biomedical Engineering, Technical Director of MRI
Email: schweser@buffalo.edu
Phone: (716) 888-4718

Specialty/Research Focus:
Multiple Sclerosis; Neurodegenerative disorders; Neuroimaging; Neurology; Neuroradiology - Radiology; Parkinson's; Radiological Physics; Radiology; Bioinformatics

Research Summary:
Magnetic resonance imaging (MRI) is a unique technique for studying the human body since it is non-invasive, does not require ionizing radiation and offers a multiplicity of complementary tissue contrasts. My research seeks to explore the potential of MRI for clinical and pre-clinical imaging and to provide new and improved MRI technology. The goal of this endeavor is twofold: 1.) to contribute deeper insight into the etiology, pathogenesis and potential treatment of neurodegenerative diseases, and 2.) to give clinicians the ability to diagnose diseases earlier and monitor them more accurately. I am currently focusing on understanding MRI contrast mechanisms as well as on developing innovative imaging and reconstruction techniques that improve the sensitivity and specificity of MRI with respect to biophysical properties of brain tissue. Advancements in this field promise to have a substantial impact on our understanding of biophysical and morphological tissue alterations associated with neurological diseases and their treatment. We recently pioneered quantitative susceptibility mapping (QSM), a breakthrough in quantitative MRI. This technique allows for unique assessment of endogenous and exogenous magnetic particles in the human brain such as iron, calcium, myelin or contrast agents. The concept of QSM is fundamentally different from conventional MRI techniques as it involves solving for all imaging voxels simultaneously in large physically motivated equations, a so-called inverse problem. At the Buffalo Neuroimaging Analysis Center (BNAC), we use QSM to explore whether brain iron may serve as an early biomarker for diseases of the central nervous system such as multiple sclerosis and Parkinson’s disease. Other interesting applications of this technique we are investigating include differentiation between hemorrhages and calcifications, detection of demyelination and quantification of tissue oxygenation. I am fascinated by the synergies from combining physical expertise with high-level mathematical, numerical and engineering concepts to advance our understanding of the human brain. Consequently, my research activities are generally interdisciplinary and involve collaboration with clinicians, physicists, computer scientists, technicians and engineers. Student projects typically focus either on the application of techniques or on technical developments. Undergraduate, graduate and doctoral candidates from a variety of disciplines such as neuroscience, physics and mathematics work collaboratively in my lab.

Umesh, Sharma
Sharma, Umesh, MD, PhDAssistant Professor
Email: sharmau@buffalo.edu
Phone: 716-829-2663

Specialty/Research Focus:
Cardiology; Cardiovascular Disease; Internal Medicine; Radiology; Cardiopulmonary physiology; Immunology; Gene Expression; Cardiac pharmacology; Stem Cells

Research Summary:
I am a cardiologist with specialized training in advanced cardiac imaging. I see outpatients at the Heart and Lung Center of Buffalo General Medicine Center (BGMC), and I care for inpatients through the cardiology consult and inpatient services at BGMC. As an advanced imaging cardiologist, I am responsible for developing and advancing the cardiac computed tomography (CT) and magnetic resonance imaging (MRI) programs at the Gates Vascular Institute (GVI) and providing these services to patients. These advanced, noninvasive imaging techniques allow physicians to perform in-depth, 3-D evaluation of the coronary tree, myocardium, heart valves, pericardium and great vessels. These imaging tools allow for the best possible diagnoses and care of patients. My research spans basic science, translational and clinical fields and combines the cross-discipline expertise on magnetic resonance (MR) technology with molecular biology. My overall goal is to study the consequences of ischemia-induced myocardial injury, with a focus on their therapeutic reversal. My research laboratory at UB’s Clinical and Translational Research Center (CTRC) is devoted to the development of novel time-and-tissue-targeted MRI methods for integrative understanding of cardiovascular pathophysiology in preclinical models. We have several interesting research projects, e.g., we have recently discovered that the presence of high-risk plaques in the carotid arteries predict future incidence of myocardial infarction and stroke. The results emphasize that the nature of atherosclerosis and the use of comprehensive non-invasive computed tomography angiography (CTA) will help identify patients who are at higher risk of developing ischemic stroke. These research results will help physicians employ early therapeutic strategies for these high-risk patients. I mentor medical students, residents and fellows both in clinical and research settings, and I precept cardiology fellows at the Heart and Lung Center at BGMC. In addition, I am deeply engaged in furthering the research and clinical education of our house staff. Our trainees have published their research in highly esteemed peer-reviewed journals, and many have routinely presented their work at national and international scientific conferences. I am committed to facilitating the career goals of my mentees while I continue to advance my own career as a clinician, researcher and mentor.