Faculty Profiles

Stuart, Inglis
Email: stuartin@buffalo.edu
Phone: 829-2846

Specialty/Research Focus:
Anatomic Pathology; Biomedical Imaging; Molecular and Cellular Biology

Research Summary:
I am a classically trained gross anatomist with a specific interest in clinical anatomy. Although I received my PhD through the Interdisciplinary Program in Molecular and Cellular Biology at Ohio University, with a specific focus on skeletal muscle biology, my professional interest and focus since graduation has been in the teaching of the anatomical sciences, and in educational research and theory, in general. I am also involved in the development of anatomical models for teaching purposes and in research and documentation of anatomical variants identified during gross anatomy dissection. Presently, I am one of the instructors for the ANA 500 gross anatomy course for the medical and dental students and serve as the coordinator for the dental section of the course. I also serve as course director for the ANA 407 gross anatomy course for OT, PT, and exercise science students. My educational research interests involve the development and execution of a flipped classroom approach to teaching, with the replacement of traditional didactic lectures with facilitated active learning (FAL) sessions. The traditional university classroom, in which a content expert lectures and students take notes, dates back to the earliest universities and predates the printing press. This was therefore the most effective and efficient means by which to disseminate knowledge. Current technology makes this approach unnecessary, and allows instructors to explore other teaching approaches that may improve retention and help develop lifelong learning strategies. Pre-recorded lectures give students more control over the time and pace at which they view the didactic sessions. My classroom sessions are modelled after the Team Based Learning (TBL) paradigm and make use of the latest in audience response technology. I am also interested in the utilization of Open Educational Resources (OER) to deliver lessons to a wider population base without violating copyright restrictions.

Pinaki, Sarder
Sarder, Pinaki, PhDAssistant Professor
Email: pinakisa@buffalo.edu
Phone: (716) 829-2265

Specialty/Research Focus:
Biomedical Image Analysis; Biomedical Imaging; Bioinformatics

Research Summary:
I have worked in three distinct research domains in my career: analytical statistical signal processing, experimental molecular imaging, and genomic data analysis. I collaborate with researchers from both academia and industry in multiple disciplines, including theoretical and applied physics, biochemistry, cell biology, molecular biology, and medicine. This multidisciplinary, cross-sector experience has given me unique skills and tools for successfully executing the goals of my laboratory. The major projects in my laboratory are focused on quantitative biomedical image processing and analysis. I am also interested in developing end-user biomedical software and building novel biomedical instruments, e.g., handheld devices that will allow noninvasive microscopic and tomographic optical imaging. This work will build on my previous research and expand into translational research that will directly support human health. My laboratory’s broad goal is to decipher meaningful information from anatomical structures and their pathologic conditions and connect them with molecular information to gain a better understanding of biological processes and disease. We focus on developing novel quantitative image processing and analysis methods, incorporating physical as well as statistical information of biological structures and their associated functional genomic information. Using statistical analysis, we have shown that our methods perform significantly better than existing ones. Existing methods in biomedicine typically do not employ both physical and statistical parameters associated with the imaging object and imaging system--and their environmental factors--while analyzing data. Thus, the results are often error-prone. By uniquely utilizing concrete physical and statistical modeling of the measurement data, our goal is to provide a more realistic profile and interpretation of complex biological systems and diseases. This, in turn, will provide new insights into diseases and improve disease diagnosis. My laboratory is woven strongly into the Department of Pathology and Anatomical Sciences’ innovative research and teaching directions that integrate anatomy, pathology and data analysis. Departmental faculty members participate in both graduate biomedical and medical programs; as part of that effort, I seek motivated students to work in my research group to focus on our novel research direction. I believe that teaching and research greatly complement each other, and I emphasize equally teaching in the classroom and guiding students in my research lab.