Faculty Profiles

Jeffrey, Anker
Anker, Jeffrey, MDAssistant Professor of Psychiatry
Email: jlanker@buffalo.edu
Phone: 716-835-1246

Specialty/Research Focus:
Addictions; Forensic Psychiatry; Geriatric Psychiatry; Psychiatry; Drug abuse

Caroline, Bass
Bass, Caroline, PhDAssistant Professor
Email: cebass@buffalo.edu
Phone: 716-829-3790

Specialty/Research Focus:
Drug abuse; Circadian Rhythm/Chronobiology; Gene Expression; Molecular and Cellular Biology; Neuropharmacology

Research Summary:
My laboratory seeks to understand the neurobiology of motivation and how these systems can be "highjacked" by abused substances. Substance abuse and addiction are wide-spread problems that have an enormous economic and emotional toll. Reports indicate that it costs the US upwards to $600 billion a year to deal with the health and criminal consequences and loss of productivity from substance abuse. Despite this, there are few effective treatments to combat this illness. The brain has natural systems responsible for motivating an organism to participate in behaviors that are necessary for survival, such as eating, exercise and reproduction. These same brain regions are highly sensitive to drugs of abuse, including cocaine, heroin and marijuana. My laboratory seeks to understand how these brain regions are affected by exposure to abused drugs, and in particular how the motivation to take drugs is altered by various molecular mediators in the neurons on these regions. The two basic questions we are interested in are 1) how projections from the cortex to the striatum influence drug seeking behaviors, and 2) how neurotransmitter receptors, particularly dopamine and cannbinoid receptors in these regions influence drug seeking. Our technical approaches include a number of basic behavioral models including measurements of locomotor activity, catalepsy, conditioned place preference and drug self-administration. In order to probe the circuitry of these brain regions, we use a number of advanced molecular techniques to activate and inactivate neuronal populations including optogenetics and artificial receptors. We probe the molecular pathways within the neurons by over expressing genes or knocking down expression using RNA interference. Gene delivery is accomplished using recombinant adeno-associated virus (rAAV) and several projects in the laboratory focus on improving this approach and exploring potential gene therapy applications for these vectors. The ultimate goal is to understand the basic neurobiology and molecular biology of addiction in order to develop more effective treatments for addiction.

Lauren, Derhodge
Derhodge, Lauren, DOClinical Assistant Professor
Email: laderhod@buffalo.edu
Phone: 716-898-1675

Specialty/Research Focus:
Addictions; Drug abuse; Psychiatry

David, Dietz
Dietz, David, PhDAssociate Professor; Interim Chair
Email: ddietz@buffalo.edu
Phone: 716-829-2071

Specialty/Research Focus:
Addictions; Drug abuse; Behavioral pharmacology; Cytoskeleton and cell motility; Gene Expression; Gene therapy; Neurobiology; Neuropharmacology; Signal Transduction; Transcription and Translation

Research Summary:
Drug addiction is a disabling psychiatric disease leading to enormous burdens for those afflicted, their friends and family, as well as society as a whole. Indeed, the addict will seek out and use illicit substances even in the face of severe negative financial, family and health consequences. It is believed that drugs of abuse ultimately “hijack” the reward circuitry of the CNS leading to cellular adaptations that facilitate the transition to the “addicted” state As is the case with both rodent models of drug taking, and well as throughout the global human population, not all individuals exposed to drugs of abuse will meet the classical definition of being truly “addicted”. We are looking at how molecular and behavioral plasticity mediates susceptibility to drug abuse and relapse like behaviors.

Margarita, Dubocovich
Dubocovich, Margarita, PhDSUNY Distinguished Professor; Department of Pharmacology and Toxicology; Senior Associate Dean for Diversity and Inclusion
Email: mdubo@buffalo.edu
Phone: (716) 829-3048

Specialty/Research Focus:
Drug abuse; Behavioral pharmacology; Signal Transduction; Neuropharmacology; Circadian Rhythm/Chronobiology

Research Summary:
My lab‘s research seeks to understand the mechanism of action of the hormone melatonin at the MT1 and MT2 G-protein coupled receptors. We study these receptors in the brain and through the body with the goal of identifying ligands that exhibit useful binding affinity and therapeutic potential. Our team of undergraduate and graduate students, postdoctoral fellows, technicians and senior scientists work with each other and with expert co-investigators in medicinal chemistry to discover and develop novel molecules that can mimic or counteract the actions of melatonin. These molecules may help treat a variety of diseases and conditions including insomnia, circadian sleep disorders, depression, seasonal affective disorders, and cardiovascular disease. Our laboratory pursues these investigations from several angles. We assess the localization of the melatonin receptors, examine their cellular and molecular signaling mechanisms,and investigate receptor fate following prolonged exposure to melatonin. We study the distinct roles of selective MT1 and MT2 melatonin receptor ligands in modulating circadian rhythms, methamphetamine‘s ability to induce both sensitization to prolonged exposure, and stimulation of the reward system. We also study cell proliferation, survival, and neurogenesis in the brain, and the changes in gene expression underlying all these processes. Our research ultimately aims to discover novel drugs with differential actions at the MT1 and MT2 receptors. We use molecular-based drug design, computer modeling and medicinal chemistry to design and synthesize small molecules that target these receptors as agonists, inverse agonists and/or antagonists. We then pharmacologically and functionally characterize these molecules using cell-based assays and bioassays and test them in circadian and behavioral animal models.

Jun-Xu, Li
Li, Jun-Xu, MD, PhDAssociate Professor
Email: junxuli@buffalo.edu
Phone: (716) 829-2482

Specialty/Research Focus:
Drug abuse; Behavioral pharmacology; Neurobiology

Research Summary:
I have two primary research interests. First, I use pharmacological approaches to seek novel therapeutics for pain. Pain is an agonizing symptom and disease that affects millions of people. Analgesics like opioids (e.g., OxyContin) are powerful for treating many pain conditions. However, opioids are not efficacious for some pain (e.g., neuropathic pain) and prolonged use of opioids has many side effects, including tolerance and dependence. My research has found that drugs acting on imidazoline I2 receptors may produce analgesic effects that are devoid of opioid-like side effects. I am continuing this line of research to further delineate the pharmacological properties of these drugs--how they work, how effective and safe they are, and how long the beneficial effects last--as a novel class of analgesics. Second, I am interested in pharmacotherapy of stimulant abuse. Stimulants represent a large family of abused drugs, including traditional drugs of abuse such as cocaine and methamphetamine (“meth”) and valuable pharmacotherapies such as Adderall and Ritalin. Stimulant abuse and addiction remain challenging problems that lack FDA-approved pharmacotherapies. We use powerful behavioral pharmacological approaches, in animal models that are predictive of human stimulant abuse conditions, to study novel drug targets and evaluate potential pharmacotherapeutic treatments. One unifying theme of the ongoing research in my laboratory is the application of receptor theory to the guidance and interpretation of the drug interactions in behaving animals. The long-term goal of my laboratory is to develop new analgesics for pain control and pharmacotherapeutics for stimulant addiction.

Richard, Rabin
Email: rarabin@buffalo.edu
Phone: (716) 829-3286

Specialty/Research Focus:
Drug abuse; Apoptosis and cell death; Molecular and Cellular Biology; Neurobiology; Signal Transduction; Toxicology and Xenobiotics

Research Summary:
My laboratory is focused on understanding the molecular and cellular actions of drugs of abuse such as ethanol and hallucinogens such as lysergic acid diethylamide (LSD). This information is a requisite step in the ultimate development of therapeutic interventions to alleviate the major healthcare and social burden associated with use and abuse of these drugs. In addition, these drugs provide an avenue to explore the basic workings of the brain under pathological conditions that are manifested as various psychiatric disorders. Previous studies, in collaboration with Dr JC Winter in the Dept of Pharmacology and Toxicology at UB, have investigated the roles of the various serotonin receptors subtypes and their associated signaling pathways as well as glutamatergic neurotransmission in the subjective effects of LSD-type hallucinogens. Our other studies have been aimed at understanding the adverse developmental effects of ethanol exposure that result in the fetal alcohol spectrum disorders with the fetal alcohol syndrome (FAS) as the most severe manifestation. Using zebrafish and neuronal cells in culture as model systems, my laboratory in collaboration with Dr CA Dlugos in the Dept of Pathology and Anatomical Sciences at UB have investigated the morphological and histological changes associated with ethanol exposure during different developmental stages as well as the mechanisms by which developmental ethanol exposure causes neuronal loss. Currently, we are investigating the neurotoxic interaction of ethanol with pesticides. Because of the wide-spread use of pesticides, people are continually exposed both voluntarily and involuntarily to an array of toxic chemicals. In addition, since consumption of alcohol is pervasive in our society with a very high prevalence of alcohol use and abuse, it is extremely likely that people with be co-exposed to both ethanol and pesticides. Because simultaneous or sequential exposure to multiple chemicals can dramatically modify the ensuing toxicological responses, we are using both in vitro (e.g., cells in culture) and in vivo (e.g., zebrafish) model systems to begin assessing the possible health risk of co-exposure to ethanol and pesticides. Using the herbicide paraquat, which is widely used throughout the world, as a test compound, we have found that ethanol synergistically increases the in vitro neurotoxicity of this pesticide. Our efforts are now aimed at ascertaining whether a similar interaction occurs in vivo as well as determining the molecular mechanism responsible for this synergistic neurotoxicity. Teaching is a naturally complement to research. Accordingly, I have also been engaged in efforts to both improve how we provide the knowledge base to our undergraduate, graduate, and professional students, and also how we help students learn to integrate and apply this information in problem-solving at the clinical and basic science levels. Efforts include: 1. using “clickers” in large class formats to assess student’s understanding of the material and well as provide each student instantaneous feedback for their own self-assessment; 2. using cases studies and a small group learning format; and 3. Having students write short grant proposals based upon the current literature as well as reviewing and critiquing their classmate’s proposals.