Faculty Profiles

Arin, Bhattacharjee
Bhattacharjee, Arin, PhDAssociate Professor
Email: ab68@buffalo.edu
Phone: (716) 829-2800

Specialty/Research Focus:
Ion channel kinetics and structure; Membrane Transport (Ion Transport); Molecular and Cellular Biology; Neurobiology; Pathophysiology; Gene Expression; Signal Transduction

Research Summary:
Neuronal firing patterns are highly diverse because neurons regulate a wide variety of different behaviors and physiological functions including cognition and memory. Whether a neuron exhibits regular spiking, burst firing, adaptation or high frequency firing will largely be determined by which specific ion channel genes a neuron chooses to express. I am interested in a class of potassium channels that are sensitive to intracellular sodium. There are two members in this family, known as Slack and Slick, and both channel subunits are expressed in many different types of neurons. I am particularly interested in how these channels contribute to the firing patterns of pain-sensing neurons and neurons of the cerebral cortex. Understanding when, where and how these channels are working should provide important information on sensory and cortical processing and will provide insights on nociception, psychiatric disorders such as schizophrenia and bipolar disorder and neurological diseases such as epilepsy.

Michael, Duffey
Duffey, Michael, PhDProfessor of Physiology and Biophysics; Professor of Medicine
Email: duffey@buffalo.edu
Phone: (716) 829-3111

Specialty/Research Focus:
Gastroenterology; Ion channel kinetics and structure; Membrane Transport (Ion Transport); Molecular and Cellular Biology

Research Summary:
Research in my laboratory concerns neurotransmitter and hormone-mediated anion secretion by gastrointestinal secretory tissues like intestinal crypts and liver ducts. I am determining the mechanisms that regulate the basolateral membrane K+ channel, KCNQ1, in anion secretion because these channels play a critical role in secretion by maintaining membrane potential as a driving force for anion exit across the apical cell membrane. Characterization of KCNQ1 K+ channels will help us to understand and remedy defects in anion secretion, especially in diseases like cystic fibrosis. I use electrophysiological techniques, including Ussing chamber, patch-clamp, and Fura-2 fluorescence techniques. I am also studying the mechanisms by which K+ channel antagonists (e.g., Zn2+) block KCNQ1 channels so that anti-secretory, anti-diarrheal drugs can be developed. I have past experience determining the mechanisms by which neurotransmitters regulate K+ channels via inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release transduction pathways. I am also collaborating with Dr. John Crane to define the mechanisms by which Zn2+ inhibits the effects of Enteropathogenic E. coli (EPEC) on epithelial cell death and EPEC-stimulated phosphorylation and activation of the CFTR Cl- channel. There is considerable controversy concerning the role and basis of GI disorders associated with autism. In collaboration with Drs. Randall Rasmusson and Glenna Bett, I am investigating the mechanistic link between autism susceptibility and abnormal GI function. I propose that disorders of cellular Ca2+ homeostasis play a key role in the GI disorders of autism. Using mouse models derived from Cav1.2 Ca2+ channel defect that produces the human disorder, Timothy Syndrome, I am characterizing muscle tension and electrophysiological properties of the Ca2+ channel in intestinal smooth muscle. This information will lead to new approaches to identify therapeutic targets and treatments for autistic spectrum GI disorders and symptoms.

Pablo, Paez
Paez, Pablo, PhDAssociate Professor
Email: ppaez@buffalo.edu
Phone: 716-881-7823

Specialty/Research Focus:
Ion channel kinetics and structure; Molecular and Cellular Biology; Neurobiology; Neuropharmacology

Research Summary:
Our research program focuses on brain development, studying the development of the oligodendroglial and astroglial cell lineages in the central nervous system in normal, mutant and transgenic mice. The primary focus in the laboratory is on ion channels that regulate specification, migration and differentiation of these glial cells. The oligodendrocyte generates CNS myelin, which is essential for normal nervous system function. Thus, investigating the regulatory and signaling mechanisms that control its differentiation and the production of myelin is relevant to our understanding of brain development and of adult pathologies such as multiple sclerosis. We have recently discovered that voltage-gated Ca++ channels are necessary for normal myelination acting at multiple steps during oligodendrocyte progenitor cells (OPCs) development, however nothing is known about its role in demyelination or remyelination events. Our research aims to determine if voltage-gated Ca++ channels plays a functional role in myelin repair. Using transgenic mice and new imaging techniques we are testing the hypothesis that voltage-gated Ca++ entry promotes OPC survival and proliferation in the remyelinating adult brain. Therefore, this work is relevant to developing means to induce remyelination in myelin degenerative diseases and for myelin repair in damaged nervous tissue. Astrocytes are the most abundant cell of the human brain. They perform many functions, including biochemical support of endothelial cells that form the blood brain barrier, provision of nutrients to the nervous tissue and a role in the repair and scarring process of the brain and spinal cord following traumatic injuries. Our lab has made the novel finding of voltage-gated Ca++ channels function in astrocyte Ca++ homeostasis, and this has implications for plasticity in astrocyte development and for Ca++ regulation in general. We are testing the hypothesis that voltage-gated Ca++ entry plays a key role in astrocyte function and glial-neuronal interactions. We have generated a conditional knockout mice for voltage-gated Ca++ channels in astrocytes, these conditional knockout mice will allow the functional analysis of voltage-gated Ca++ channels in astroglia of the postnatal and adult brain. Analyzing such mice using a combination of behavioral, electrophysiological, imaging, and immunohistochemical techniques will provide new insights in our understanding of astroglial contribution to brain function. These projects have been supported for many years by grants from the NIH and the National Multiple Sclerosis Society.

Gabriela, Popescu
Email: popescu@buffalo.edu
Phone: (716) 829-3807

Specialty/Research Focus:
Neurodegenerative disorders; Ion channel kinetics and structure; Membrane Transport (Ion Transport); Molecular Basis of Disease; Neurobiology; Neuropharmacology; Protein Function and Structure; Signal Transduction

Research Summary:
We investigate the activation mechanisms of fast neurotransmitter receptors. We seek to define the activation pathway, modulatory mechanisms and structure-function relationships of the N-methyl-D-aspartate (NMDA) receptor to better understand the roles played by this protein in the brain. NMDA receptors are the most abundant glutamate-stimulated, Ca2+-conducting ion channels in brain and spinal cord. They are the predominant molecular devices for controlling synaptic development and plasticity and govern memory and learning processes. Understanding the mechanisms that control their activity may lead to more effective strategies to treat neuropathies including stroke, neurodegenerative conditions, chronic pain and addiction as well as mental disorders such as schizophrenia and epilepsy. 

Feng, Qin
Email: qin@buffalo.edu
Phone: (716) 829-6030

Specialty/Research Focus:
Ion channel kinetics and structure; Membrane Transport (Ion Transport); Molecular Basis of Disease; Molecular and Cellular Biology; Protein Folding; Protein Function and Structure; Signal Transduction

Research Summary:
Work in my lab seeks to elucidate the transduction mechanisms of ion channels involved in thermal sensation and pain, such as the heat-activated vanilloid receptors (TRPV1-4) and the cold-activated TRPM8 – the so-called thermal TRP channels. Expressed in peripheral afferent nerve endings, these channels function as an array of thermometers for sensing ambient temperature from noxious cold to noxious hot. While all proteins are thermally sensitive, thermal TRP channels are gated by temperature and possess unprecedentedly high temperature dependence. But the mechanisms of their temperature gating has remained mysterious, in contrast to our abundant knowledge on other types of ion channel gating (e.g. voltage or ligand-driven). Thermal TRP channels are also distinct for their polymodal responsiveness. TRPV1, for example, is responsive to heat, voltage, pH, capsaicin (i.e. the hot ingredient of chili peppers) among many other irritant compounds. The channels are thus informative for deciphering how biological proteins achieve multitasking. Thermal TRP channels also have receptor-like roles in mediating intracellular signaling. The calcium influx through the channels has potentially a broad spectrum of functional consequences, one of which is the desensitization of the channels themselves, a phenomenon that is believed to underlie peripheral analgesics. Our research is centered on problems like these, and we approach them by a combination of techniques such as recombinant mutagenesis, patch-clamp recording, fluorescence measurements, quantitative modeling, etc, which together allow us to draw insights into functions of the channels at mechanistic levels. Complementing our experimental studies, we are also interested in development of methodology to ever extend experimental resolutions. For example, to time-resolve temperature-dependent activation of thermal TRP channels, we have developed a laser diode-based temperature clamp apparatus, which achieves for the first time a submillisecond resolution (>105 oC/s) while capable of clamping temperature constant. For the past decade we have also been developing sophisticated algorithms for statistical analysis of single-molecule measurements such as single-channel patch-clamp recordings, which can help unravel the richness of data pertaining to molecular mechanisms at high resolutions. Together, these approaches provide us with unique abilities for in-depth studies of structure-mechanisms of ion channels.

Frederick, Sachs
Sachs, Frederick, PhDSUNY Distinguished Professor
Email: sachs@buffalo.edu
Phone: (716) 829-5161

Specialty/Research Focus:
Cardiopulmonary physiology; Cytoskeleton and cell motility; Ion channel kinetics and structure; Membrane Transport (Ion Transport); Molecular and Cellular Biology; Molecular Basis of Disease; Signal Transduction

Research Summary:
My research interests center on mechanical and electrical biophysics, from molecules to organs, and the development of new tools. And, in recent years I worked in transitional science; bringing basic science to the clinic and to industry. My basic research interests are on cell mechanics and the mechanisms by which mechanical forces are transduced into messages such as voltage and chemicals such as ATP and Ca2+. I discovered mechanosensitive ion channels in 1983. My methodology has included patch clamp, high resolution bright field light microscopy, low light fluorescence microscopy, high speed digital imaging, TIRF, digital image analysis, high voltage EM with tomography, Atomic Force Microscopy, molecular biology, natural product and recombinant protein biochemistry, NMR and microfabrication and microfluidics. We discovered the only known specific inhibitor of mechanosensitive ion channels and uncovered its remarkable mode action by using a combination of electrophysiology and chiral chemistry. We have demonstrated potential clinical applications of the peptide for cardiac arrhythmias, oncology, muscular dystrophy, and incontinence. We have developed many scientific tools. Recently we developed a sensor chip to measure cell volume in real time, and that is now entering production with Reichert Instruments of Buffalo. We also have an Small Business Innovation Research contract to develop a microfluidic, bipolar, temperature jump chip with ALA Scientific and developed a microfabricated Atomic Force Microscopy probe that is an order of magnitude faster and more stable than any commercial probes. We have made probe operable with two independent degrees of freedom on a standard Atomic Force Microscopy. This permits us to remove all drift and coherent noise by using one axis to measure the substrate position and the other the sample position. These probes are being produced by a new company in Buffalo, kBtwist. We have used the Atomic Force Microscope combined with electrophysiology to study the dynamics of single voltage dependent ion channels. This technique provides a resolution of >0.01nm in a kHz bandwidth. I have developed other hardware including the first automated microelectrode puller, a micron sized thermometer and heater and a high speed pressure servo. Some of these devices have been patented by the University of Buffalo and some are in current production. To analyze the reaction kinetics of single molecules, we developed and made publicly available (www.qub.buffalo.edu) a complete software package for Windows that does data acquisition and Markov likelihood analysis. The development was funded by the National Science Foundation, National Institutes of Health and Keck over the last fifteen years, and has been applied to ion channels, molecular motors and the even the sleep patterns of mice. We have taught at UB hands-on course to use the software, and the course was attended by an international group of academic scientists and students, government and industry.

Satpal, Singh
Email: singhs@buffalo.edu
Phone: (716) 829-2453

Specialty/Research Focus:
Behavioral pharmacology; Cardiac pharmacology; Ion channel kinetics and structure; Membrane Transport (Ion Transport); Molecular Basis of Disease; Neurobiology; Neuropharmacology; Signal Transduction; Transgenic organisms

Research Summary:
With over 400 genes coding for them in humans, ion channels play a significant role in most physiological functions. Drug-induced channel dysfunction often leads to a variety of disorders and results in significant incidence of serious injury and death. We investigate molecular mechanisms underlying neurodegenerative disorders and cardiac arrhythmias induced by ion channel dysfunction arising from genetic factors and/or drug interactions. The tools used for these investigations include genetic, electrophysiologic, pharmacologic, molecular and cell culturing methods. Preparations used for experiments include Drosophila as a genetic model system, and human cell lines expressing human ion channels that play an important role in critical-to-life functions including cardiac rhythm, respiration and the central nervous system.