University at Buffalo - The State University of New York
Skip to Content

Faculty Profiles

James, Bangs
Bangs, James, PhDGrant T. Fisher Professor and Chair of Microbiology & Immunology
Email: jdbangs@buffalo.edu
Phone: 716-645-1827

Specialty/Research Focus:
Eukaryotic Pathogenesis; Microbial Pathogenesis; Microbiology; Molecular and Cellular Biology

Research Summary:
Human African trypanosomiasis (commonly called Sleeping Sickness) is one of the global great neglected diseases, causing ~10,000 cases annually according to most recent estimates (2009). The related veterinary disease of livestock (Nagana) also has significant impact on human economic well being throughout sub-Saharan Africa wherever the insect vector (tsetse flies) are found. Both diseases are caused parasitic protozoa called trypanosomes (Trypanosoma brucei ssp.) Because trypanosomes are eukaryotic cells, organized similarly to every cell in our bodies, treatment of infection is not unlike cancer treatment in that chemotherapy against the parasite has harsh consequences for the patient. However, infection is invariably fatal without intervention, consequently new more specific drugs are desperately needed. In addition, because trypanosomes are an anciently divergent evolutionary lineage, they provide a unique model system for studying basic eukaryotic biology. My laboratory focuses on the cell biology of these protozoa, specifically on intracellular trafficking of lysosomal and cell surface proteins as key aspects of the host:parasite relationship. The trypanosome lifecycle alternates between the mammalian bloodstream and the tsetse midgut, and each stage has a unique protein surface coat that forms the first line of contact with the host. These coat proteins are anchored in membranes by glycosylphosphatidylinositol (GPI) anchors and are essential for survival in each stage. Consequently, correct protein targeting to the cell surface is critical to the success of the parasite. Also, endocytic and lysosomal functions are greatly up-regulated in the pathogenic bloodstream stage for both nutritional and defensive purposes. Using classic and current cell biological and biochemical approaches we work on four distinct areas: 1) GPI-dependent targeting of surface coat proteins; 2) machinery of secretory trafficking; 3) stage-specific lysosomal biogenesis and proteomics; and 4) role of sphingolipids in secretory transport. Our ultimate goal is to define aspects of trypanosomal secretory processes that may provide novel avenues to chemotherapeutic intervention.

Ira, Blader
Email: iblader@buffalo.edu
Phone: 716-829-5809

Specialty/Research Focus:
Eukaryotic Pathogenesis; Immunology; Infectious Disease; Microbial Pathogenesis; Microbiology; Molecular Basis of Disease; Signal Transduction; Vision science

Research Summary:
Toxoplasma gondii is an obligate intracellular parasite that has the unique ability of infecting most nucleated cells in almost all warm-blooded animals. It is one of the most widespread infections in the world: approximately 50 percent of the world‘s population is infected. Luckily, most infected people are asymptomatic; however, in AIDS patients and other immune-compromised individuals, Toxoplasma causes serious and life-threatening disease. Besides its own medical importance, we study Toxoplasma because it represents an ideal model system to study how other related pathogens cause disease. These include Plasmodium, which is the causative agent of malaria that is responsible for millions of deaths worldwide, and Cryptosporidium, which causes another important secondary infection in AIDS patients. Toxoplasma is a great model system because it can easily be grown in vitro, its genome has been sequenced and it can be genetically manipulated. My research team and I are focused on two different but related questions. First, we want to know how the parasite grows inside of its host cell. One of the important things Toxoplasma must do to grow is hijack host cell pathway and factors. We are using functional genomic assays such as microarrays and genome-wide RNA interference (RNAi) screens to identify these host factors. Identifying them is important because if the parasite cannot use these pathways, the parasite will not grow or cause disease. Thus, these pathways represent novel drug targets. As an example, we discovered that oxygen-regulated transcription factors in the host cell are necessary to support parasite growth. We are currently identifying how these transcription factors function and how the parasite adapts to the various oxygen environments it encounters during its lifecycle. Second, we want to know how Toxoplasma affects the central nervous system and how anti-Toxoplasma immune responses function in the central nervous system. These questions are important because Toxoplasma primarily causes disease in the brain and retina. Our work has revealed that when Toxoplasma actively grows in the brain (a condition known as toxoplasmic encephalitis), it causes a massive reorganization of inhibitory synapses. These changes inhibit GABAergic synaptic transmission and this inhibition is a major factor in the onset of seizures in infected individuals. A second line of research using an ocular infection model has focused on defining how immune responses in the central nervous system are generated by Toxoplasma and then resolved once the infection is under control.

Anthony, Campagnari
Campagnari, Anthony, PhDProfessor of Microbiology/Immunology and Medicine
Email: aac@buffalo.edu
Phone: (716) 829-2593

Specialty/Research Focus:
Bacterial Pathogenesis; Infectious Disease; Microbial Pathogenesis; Microbiology

Research Summary:
My research interests focus on bacterial pathogenesis, emphasizing bacterial biofilms, antimicrobial therapies and vaccine antigens. One major area of my research lab is otitis media (OM) or middle ear disease. Approximately 80 percent of children experience one episode of OM while others have recurrent infections. Chronic OM infection causes hearing impairment leading to developmental problems as these children reach school age. My laboratory has concentrated on two major causes of OM, Moraxella catarrhalis and Streptococcus pneumoniae. Our recent work suggests that M. catarrhalis colonization predisposes patients to colonization with S. pneumoniae in polymicrobial biofilms. The goals of this work are to define biofilm-associated factors and to identify signals that induce bacteria to transition from asymptomatic colonizers to pathogenic organisms leading to OM. Our second major research focus is the identification of novel antimicrobial therapies. Chronic OM is likely a biofilm-associated disease and biofilms are highly antibiotic resistant. Antibiotic resistance is a major problem worldwide and new drug development is both time consuming and extremely expensive. We have demonstrated that photodynamic therapy (PDT), an FDA-approved cancer treatment, is also bactericidal against the three major otopathogens. Thus, the goal of this research is to adapt PDT into a clinically effective treatment for chronic OM. Our third research area involves novel antimicrobial treatments for orthopedic/prosthetic infections. Infections after orthopedic intervention, including knee/hip replacements and insertion of prosthetic devices, are devastating to the patient and these infections will likely increase over the next 20 years. This is particularly relevant to the military where improvised explosive devices cause severe extremity injuries requiring amputation. Antibiotic-resistant biofilms are the primary source of these infections. In collaboration with colleagues at UB, we are testing a novel electrical stimulation method for prevention/eradication of biofilm infections on implant materials. The goals of this research are to define the optimal antimicrobial parameters that are broadly effective against multiple pathogens, including Staphylococcus aureus, Acinetobacter baumannii, Staphylococcus epidermidis and Klebsiella pneumoniae. The members of my research team typically include a combination of graduate students, lab technicians and a junior faculty member. In the summer, I usually mentor medical students or undergraduates who are interested in the fundamentals of basic science and translational research focused on microbial pathogenesis.

Terry, Connell
Connell, Terry, PhDProfessor of Microbiology and Immunology, Adjunct Professor of Oral Biology
Email: connell@buffalo.edu
Phone: (716) 829-3364

Specialty/Research Focus:
Allergy and Immunology; Medical Microbiology; Infectious Disease; Microbiology; Genomics and proteomics; Immunology; Microbial Pathogenesis; Molecular and Cellular Biology; Molecular Basis of Disease; Molecular genetics; Gene Expression; Signal Transduction; Protein Function and Structure; Bacterial Pathogenesis

Research Summary:
Research efforts in my laboratory are focused in the fields of immunology and bacterial pathogenesis, two diverse fields of biomedical research for which I have two separate research groups. Projects in both fields are performed by undergraduates, doctoral and master’s degree students, postdoctoral fellows and senior research associates. One major focus of my laboratory is studying the regulation of mucosal immune responses. We investigate the cellular and molecular events by which Type II heat-labile enterotoxins (HLTs), produced by certain strains of Escherichia coli, modulate immune responses. We have demonstrated that LT-Ilia, LT-IIb and LT-IIc, when co-administered with an antigen, have the capacity to enhance antibody and cellular immune responses to that antigen. Using a variety of immunological and cellular technologies, including flow cytometry, fluorescence resonance energy transfer (FRET) detection, cytokine multiplex analysis, mutagenesis, quantitative Reverse Transcription PCR (qRT-PCR), RNA-sequencing (RNA-Seq) and a variety of transgenic mice, we are investigating the mechanisms by which these immunomodulators productively interact with various immunocompetent cells (T cells, B cells, dendritic cells, macrophages) to induce or suppress cytokine production, costimulatory ligand expression and cellular proliferation. A practical outgrowth of these experiments is the potential to engineer novel recombinant vaccines by genetically fusing antigens from different pathogens to the enterotoxins. Recent experiments have shown that these HLT are lethal for triple-negative breast cancer cells, which has opened a new area of oncological research for the lab. A second focus of my laboratory is to investigate the molecular mechanisms by which adherent-invasive Escherichia coli (AIEC) induce, exacerbate or prolong the symptoms of inflammatory bowel disease (IBD) and Crohn’s disease, two acute and chronic inflammatory diseases of the human gut. In vitro, AIEC strains invade into the cytoplasm of several epithelial cell lines. Using recombinant screening methods and RNA-Seq technologies, we are identifying the genes of AIEC that are required to attach and to invade gut cells.

Andrew, Gulick
Gulick, Andrew, PhDPrincipal Research Scientist, HWI
Email: amgulick@buffalo.edu
Phone: 716-898-8619

Specialty/Research Focus:
Structural Biology; X-ray Crystallography; Microbial Pathogenesis; Microbiology; Protein Function and Structure; Proteins and metalloenzymes

Research Summary:
Structural Biology, Natural Product Biosynthesis, Enzymology.

Keith, Krabill
Krabill, Keith, MDClinical Assistant Professor
Email: krabill@buffalo.edu
Phone: (716) 859-2140

Specialty/Research Focus:
Anatomic Pathology; Blood Banking/Transfusion Medicine; Clinical Pathology; Cytopathology; Hematology - Clinical Pathology; Immunopathology; Surgical Pathology; Toxicology; Transfusion Medicine; Bioinformatics; Microbiology; Virology

Research Summary:
I serve the Department of Pathology and Anatomic Sciences as a general pathologist in anatomic and clinical pathology. My primary areas for service work include surgical pathology and cytopathology as an attending pathologist rotating among the Kaleida hospital sites and clinical pathology activities in clinical chemistry, transfusion medicine, microbiology and hematology. I serve as the laboratory medical director for the clinical laboratories at the Women and Children‘s Hospital of Buffalo and the Center for Laboratory Medicine, Williamsville (Flint). I also provide more specialized medical support for the forensic toxicology laboratory at the Women and Children‘s Hospital, the fetal defect screening program at the Center for Laboratory Medicine in Williamsville, the Virology laboratory at Women and Children‘s Hospital and the Therapeutic Plasmapheresis program at the Buffalo General Medical Center. I have developed an interest in Clinical Informatics and regularly employ those skills to retrieve and analyze data from Kaleida and elsewhere to support clinical decision making, research activities, EHR development and business development. Within the department, I am the pathologist overseeing the Transfusion Service across Kaleida and also provide pathology direction to the Kaleida Clinical Chemistry and Microbiology programs. In addition, I support the leadership of Kaleida in their Utilization Program, the Gainsharing Program, Peer Review and as Chair of the Site specific Transfusion Committees. Since January 2013 I have also served as the laboratory director of the Erie County Public Health Laboratory. Previously I have served as the laboratory director at the Center for Laboratory Medicine, Amherst (Suburban), Buffalo General Hospital and as an assistant laboratory director at Gates Circle. Each of these positions has been valuable to me in learning how different groups work together and how different groups of clinicians see and set expectations for a pathology department. Outside of Kaleida, I serve the region as representative to the Erie County Medical Society Legislative Committee and the Economic Affairs Committee. I have also served as president of the Western New York Society of Pathologists (1999-2000) and as Delegate to the College of American Pathologists House of Delegates (2005 - present). The overall theme of these activities is to leverage the skills cultivated by any practicing pathologist to recognize patterns. Those patterns recognized are then directed to purposes that can be quite diverse, ranging from diagnosis to data integrity. Data retrieved from multiple sources are used to provide an unbiased review for departmental and hospital leaders to troubleshoot, drive test menus or to review patterns of practice. Good data can drive good decisions, but only to the degree that the data can be recognized and understood. My professional time is divided in four parts, with anatomic pathology service work comprising about one quarter of my time, clinical pathology service work a second quarter, administrative activities a third quarter and clinical informatics the last quarter (plus or minus 5%), but with the added bonus that on any one day, these duties can shift dramatically to address the needs of the department and hospital. One of the most rewarding parts of my career has been the opportunity do all of these to the best of my ability and to support the efforts of the excellent professionals around me. The variety of responsibilities I have translate into a job that is never dull. I have used my own situation as a model for the pathology residents I train to provide a live demonstration that the field of Pathology is big enough to have something of interest for any interested person.

Thomas, Melendy
Melendy, Thomas, PhDAssociate Professor of Microbiology & Immunology, and Biochemistry
Email: tmelendy@buffalo.edu
Phone: (716) 829-3789

Specialty/Research Focus:
Infectious Disease; Microbiology; Molecular and Cellular Biology; Molecular genetics; DNA Replication, Recombination and Repair; Virology; Genome Integrity

Research Summary:
The major focus of my laboratory is in understanding the molecular machines that make up the DNA replication forks of the small human DNA viruses, polyoma- and papillomaviruses. Papillomaviruses and polyomaviruses are human pathogens; human papillomavirus (HPV) results in a vast number of human cancers, and the human polyomaviruses JC and BK cause serious disease and death in immunocompromised patients. Both viral systems provide important models for the study of human DNA replication mechanisms and have allowed for vital insights into eukaryotic DNA replication. The study of polyomavirus DNA replication led to the first identification of many cellular DNA replication complexes and processes; papillomavirus has provided the best structures and models to date of replicative hexameric DNA helicases and how they function. I typically train undergraduate, master’s and doctoral students and postdoctoral scholars, assistant research professors and laboratory technicians. My laboratory focuses on two primary areas. One is elucidating the dynamic protein-protein interactions that allow the series of enzymes required to replicate DNA to act in concert and in the correct sequence required to duplicate the genome. My laboratory has been at the forefront of identifying the interactions between the one critical HPV DNA replication protein, the origin-binding DNA helicase, E1, and cellular DNA replication proteins. Understanding these interactions and the roles they play in the HPV DNA replication process has helped our understanding of, and continues to lead to information that tells us more about how both viral and eukaryotic DNA replication forks function. In addition, as we identify protein-protein interactions between HPV E1 and cellular factors that are essential for HPV DNA synthesis, we will uncover potential targets for development of broad-range HPV antivirals that could act to block HPV replication. We recently obtained a large multilaboratory NIH research grant to investigate just this possibility for the interaction between HPV E1 and the human DNA replication protein, Topoisomerase I. The second primary area of investigation is elucidating how the cellular DNA damage response (DDR) pathways inhibit DNA replication when cells are subjected to DNA damage. For many years, the DDR field focused on the effects of DDR on the cell cycle kinases as the only method by which DNA replication was arrested. In the mid- to late-2000s, researchers recognized that in mammalian cells there is also a substantial (tenfold) inhibition of elongation of DNA replication following DDR. The mechanisms for this inhibition are unknown. Using both in vitro and cell-based simian virus 40 (SV40) DNA replication systems, we have shown that SV40 DNA replication is also shut down in response to DDR kinase pathways and that this is not based on cell cycle kinase action. Therefore, SV40 provides a useful model system for determining how elongation of DNA replication is inhibited by DDR. Furthermore, we have shown that in contrast HPV DNA replication does not respond to DDR, providing us an important control DNA replication system for these studies. (The lack of DDR arrest of HPV DNA replication likely explains why HPV integrates so readily into host cell chromosomes−an important step for HPV-induced carcinogenesis). Our studies on the DDR effect on polyoma and papilloma virus DNA replication will lead to insights into the effect of DDR on cellular DNA replication as well as an understanding of how HPV integrates into host cell chromosomes causing HPV-induced cancers.

Ted, Ondracek
Ondracek, Ted, MDClinical Assistant Professor; Attending Pathologist for UB Pathologists, Inc.
Email: ondracek@buffalo.edu
Phone: (716) 859-2140

Specialty/Research Focus:
Anatomic Pathology; Autopsy; Clinical Pathology; Cytopathology; Dermatopathology - Anatomic Pathology; Immunopathology; Medical Microbiology; Surgical Pathology; Bioinformatics; Microbiology

Research Summary:
I pursued undergraduate and graduate education in biomedical engineering because of my interest in the application of basic science to solve real world problems. My studies included biomaterials and medical imaging. An interest specifically in medical science led me to medical school and eventually into pathology. After close to four years practicing community pathology, a desire to reestablish connections with UB pathologists initiated during my Roswell Park fellowship brought me back to Buffalo as a UB pathologist. My clinical responsibilities include surgical pathology, cytopathology, autopsy pathology and clinical pathology. I routinely work with pathology residents during their surgical pathology, cytology and autopsy rotations. I have particular interest in dermatopathology and gastrointestinal pathology. Image processing and analysis and bioinformatics also intrigue me. I am currently searching for new opportunities to collaborate with faculty in the anatomical sciences half of our department.

John, Panepinto
Panepinto, John, PhDAssociate Professor
Email: jcp25@buffalo.edu
Phone: (716) 829-2090

Specialty/Research Focus:
Eukaryotic Pathogenesis; Gene Expression; Infectious Disease; Microbial Pathogenesis; Microbiology; RNA; Signal Transduction

Research Summary:
There are estimated to be over one million species of fungi on the earth, yet very few of these species are capable of causing deadly systemic infections in humans. One of the major limiting factors for most fungi is their inability to grow at mammalian core body temperature. We utilize the fungal pathogen Cryptococcus neoformans var. grubii as a representative fungal pathogen to understand how these few fungi have adapted to growth at mammalian body temperature. C. neoformans is a worthy pathogen, as it is estimated to cause over 500,000 deaths from meningoencephalitis per year, primarily in Africa and Southeast Asia as an HIV/AIDS comorbidity. We use the temperature-limited Cryptococcus amylolentus as a comparator; it is an environmental strain that produces similar virulence factors to C. neoformans and is fully virulent in surrogate invertebrate hosts at permissive temperatures. We have discovered that host temperature adaptation in C. neoformans is accompanied by a reprogramming of gene expression at the level of messenger RNA (mRNA) stability. In response to temperature stress, C. neoformans rapidly degrades mRNAs that encode energy consuming machinery such as ribosomes. At the same time, it prioritizes the translation of stress-responsive mRNAs on existing ribosomes. Because mRNA synthesis and decay are coupled processes, we seek to identify the protein components of mRNA complexes that mediate the specificity of this decay process and posttranslational modifications, such as arginine methylation and phosphorylation, that modify their function. In addition, we are investigating the signaling pathways that accelerate or slow mRNA decay in response to specific environmental stimuli such as host temperature and nutrient deprivation. Finally, mRNA decay not only alters gene expression at the posttranscriptional level, but the degradation of abundant mRNAs during stress releases nucleotide intermediates that can be utilized by the stressed cell to promote genome stability. We are investigating the process of mRNA degradation as well as nucleotide metabolic pathways as drug targets in C. neoformans and other fungal pathogens. Our goal is to define the unique attributes of C. neoformans that confer pathogenicity and to identify potential targets for novel therapeutics. Each of my students has a project that contributes to the overall goals of my research team. Students in my laboratory work independently, though with frequent interaction with me regarding the direction of investigation and interpretation of data. Regular meetings allow us to provide input on each other’s projects. I expect my students to present their work at least once per year at a national or international meeting, and I expect them to do the bulk of the work in writing papers describing their findings for publication.

Laurie, Read
Email: lread@buffalo.edu
Phone: (716) 829-3307

Specialty/Research Focus:
Eukaryotic Pathogenesis; Gene Expression; Genomics and proteomics; Infectious Disease; Microbial Pathogenesis; Microbiology; Molecular and Cellular Biology; Molecular genetics; Protein Function and Structure; RNA

Research Summary:
Trypanosoma brucei is a eukaryotic pathogen that causes human African trypanosomiasis, a disease that is invariably fatal if not treated. Essential and novel processes in this parasite may serve as starting platforms for new chemotherapeutics, which are urgently needed. Our laboratory combines biochemical, genetic, genomic and proteomic approaches toward understanding gene regulation and protein modification in this pathogenic eukaryote. One focus in my laboratory is RNA editing, a novel mechanism for regulating mitochondrial gene expression in which sequence information is added to mRNAs after transcription by specific insertion and deletion of uridine residues. RNA editing is essential for creating translatable open reading frames (ORFs). We are performing functional and biochemical characterization of the large, dynamic RNA-protein complex termed MRB1, which coordinates multiple aspects of the RNA editing process. A second focus is on regulating RNA stability and translational control in T. brucei, which constitute the major methods of gene regulation in this organism. We identified an RNA binding protein, DRBD18, that impacts the stabilities of hundreds of mRNAs. Our data support a model in which posttranslational modification of DRBD18 by arginine methylation acts as a switch to change DRBD18 from an mRNA destabilizer to an mRNA stabilizer by regulating specific protein-protein and protein-RNA interactions. We are testing this model in vitro and in vivo using reporter assays, in vivo protein-RNA cross-linking and protein-protein interaction assays. A third focus is on understanding the mechanisms by which protein arginine methylation modulates trypanosome biology.  We performed a global proteomic analysis of the arginine methylome of T. brucei, identifying >1100 methylproteins spanning most cellular compartments and a wide array of functional classes. We are now analyzing novel mechanisms of protein arginine methyltransferase regulation and defining the physiological and molecular functions of arginine methylmarks on selected proteins. I foster a collaborative and flexible laboratory environment, and I encourage my students to explore the research topics that interest them.

Mark, Sutton
Email: mdsutton@buffalo.edu
Phone: (716) 829-3581

Specialty/Research Focus:
DNA Replication, Recombination and Repair; Gene Expression; Genome Integrity; Microbiology; Molecular and Cellular Biology; Protein Function and Structure; Signal Transduction

Research Summary:
We are interested in developing an integrated mechanistic view of how organisms coordinate the actions of their DNA replication machinery with those of other cellular factors involved in DNA repair and damage tolerance. Failure to properly coordinate these functions leads to mutations, genome instability, and in extreme cases, cell death. We utilize a combination of biochemical, biophysical, and genetic approaches to investigate the molecular mechanisms of DNA replication, DNA repair, and error-prone DNA damage tolerance functions in Escherichia coli. The primary mechanism for damage tolerance involves direct bypass of damaged bases in the DNA. This process is inherently error-prone, and is the basis for most mutations. Current efforts are focused on understanding the mechanisms by which the actions of high fidelity and error-prone lesion bypass DNA polymerases are coordinated with each other, as well as other proteins involved in DNA metabolism. Our goal in this work is to develop methods that enable us to control the fidelity of DNA repair for therapeutic gain. We are also interested in understanding the mechanisms that contribute to DNA mutagenesis in the opportunistic human pathogen, P. aeruginosa. P. aeruginosa is a particular problem for individuals afflicted with cystic fibrosis. Persistent colonization of cystic fibrosis airways with P. aeruginosa serves as a major source of morbidity and mortality for these patients. The ability of P. aeruginosa to persist in the airways relies in part on its ability to adapt to the continuously changing environment within the diseased airways. We are particularly interested in determining the contribution of mutagenesis and DNA repair to adaptive mutations that contribute to clonal expansion and pathoadaptation of P. aeruginosa during colonization of cystic fibrosis airways.

Noreen, Williams
Email: nw1@buffalo.edu
Phone: (716) 829-2279

Specialty/Research Focus:
Infectious Disease; Microbiology; Microbial Pathogenesis; Molecular and Cellular Biology; Gene Expression; Transcription and Translation; Protein Function and Structure; RNA; Eukaryotic Pathogenesis

Research Summary:
In my laboratory, we use molecular biological and biochemical approaches to study Trypanosoma brucei, the causative agent of African sleeping sickness, and Trypanosoma cruzi, which causes Chagas disease in South and Central America. Treatment for these diseases is severely limited due to increasing drug resistance and lack of available drugs. The goal of our work is to discover and exploit critical events that occur in the parasite life cycle that may be used to prevent growth or transmission of the parasite. The major project in my laboratory examines the ribosome, the complex molecular machine that drives protein synthesis. While many features of the ribosome and its assembly pathway are conserved in the parasites we study, we have identified features that are very different from the human host. Our laboratory discovered a pair of trypanosome-specific RNA binding proteins, P34 and P37, that are part of a unique preribosomal complex that is essential for ribosomal biogenesis and survival of trypanosomes. This may suggest that the interaction of these proteins with other components of the ribosomal assembly pathway can be developed as targets for chemotherapy. We are developing a high-throughput screen for small molecules that disrupt the complex in trypanosomes and do not harm the human host. My team and I also collaborate with Dr. Joachim Frank at Columbia University on a project to examine the structure of the ribosome and intermediates in the pathway of assembly using cryo-electron microscopy (cryo-EM). These experiments will provide important information about the unique features of the structure and function of the trypanosome ribosome and further our discovery of potential drug targets. In addition, we continue in a long-standing collaboration with Dr. Beatriz Garat at the Universidad de la Républica in Uruguay, examining both DNA and RNA binding proteins which regulate gene expression in Trypanosoma cruzi. The balance of graduate, undergraduate and medical students and postdoctoral researchers I mentor changes from year to year, though the international quality I strive to maintain has distinguished my laboratory for years: I enjoy having students from around the world as part of my research team. I am the course director for, and lecture in Critical Analysis and Eukaryotic Pathogens. I am also the course director for Eukaryotic Gene Expression and the co-course director for Molecular Parasitology. Additionally, I lecture in Microbiology for Undergraduates.

Gail, Willsky
Willsky, Gail, PhDAssociate Professor
Email: gwillsky@buffalo.edu
Phone: (716) 829-2969

Specialty/Research Focus:
Cell growth, differentiation and development; Microbiology; Molecular Basis of Disease; Molecular and Cellular Biology; Regulation of metabolism; Signal Transduction; Toxicology and Xenobiotics; Vitamins and Trace Nutrient

Research Summary:
Dr. Willsky’s research focuses on the role of oxovanadium compounds in cellular metabolism. V is a trace metal believed to be required for growth. Oral administration of oxovanadium compounds alleviates the symptoms of Diabetes in animal models and humans. The techniques of genetics, microbiology, molecular biology, biochemistry, pharmacology, magnetic resonance spectroscopy, and cell physiology are used. The diabetes-altered gene expression of genes involved in lipid metabolism, oxidative stress and signal transduction is returned to normal by V treatment of rats with STZ-induced diabetes, as demonstrated using DNA microarrays. Inhibition of tyrosine protein phosphatases is believed to be a major cause of the insulin-like effects of V. Our results implicate the interaction of V with cellular oxidation-reduction reactions as being important in the anti-diabetic mechanism of V complexes. A new project in the lab studies the mode of action of medicinal plant mixtures used by the native healers of Peru.