Faculty Profiles

Todd, Demmy
Email: tdemmy@buffalo.edu
Phone: (716) 845-8675

Specialty/Research Focus:
Cardiopulmonary physiology; Surgery; Surgical Critical Care - Surgery; Thoracic Surgery; Regulation of metabolism

Nader, Nader
Nader, Nader, MD, PhD, FACC, FCCPProfessor of Anesthesiology, Research Professor of Pathology
Email: nnader@buffalo.edu
Phone: 716 862-8707

Specialty/Research Focus:
Anesthesiology; Cardiovascular Disease; Cardiopulmonary physiology; Immunology

Research Summary:
Special interest in academic medicine and active research in the kinetics of inflammatory responses in acute lung injury and myocardial ischemia reperfusion.

Frederick, Sachs
Sachs, Frederick, PhDSUNY Distinguished Professor
Email: sachs@buffalo.edu
Phone: (716) 829-5161

Specialty/Research Focus:
Cardiopulmonary physiology; Cytoskeleton and cell motility; Ion channel kinetics and structure; Membrane Transport (Ion Transport); Molecular and Cellular Biology; Molecular Basis of Disease; Signal Transduction

Research Summary:
My research interests center on mechanical and electrical biophysics, from molecules to organs, and the development of new tools. And, in recent years I worked in transitional science; bringing basic science to the clinic and to industry. My basic research interests are on cell mechanics and the mechanisms by which mechanical forces are transduced into messages such as voltage and chemicals such as ATP and Ca2+. I discovered mechanosensitive ion channels in 1983. My methodology has included patch clamp, high resolution bright field light microscopy, low light fluorescence microscopy, high speed digital imaging, TIRF, digital image analysis, high voltage EM with tomography, Atomic Force Microscopy, molecular biology, natural product and recombinant protein biochemistry, NMR and microfabrication and microfluidics. We discovered the only known specific inhibitor of mechanosensitive ion channels and uncovered its remarkable mode action by using a combination of electrophysiology and chiral chemistry. We have demonstrated potential clinical applications of the peptide for cardiac arrhythmias, oncology, muscular dystrophy, and incontinence. We have developed many scientific tools. Recently we developed a sensor chip to measure cell volume in real time, and that is now entering production with Reichert Instruments of Buffalo. We also have an Small Business Innovation Research contract to develop a microfluidic, bipolar, temperature jump chip with ALA Scientific and developed a microfabricated Atomic Force Microscopy probe that is an order of magnitude faster and more stable than any commercial probes. We have made probe operable with two independent degrees of freedom on a standard Atomic Force Microscopy. This permits us to remove all drift and coherent noise by using one axis to measure the substrate position and the other the sample position. These probes are being produced by a new company in Buffalo, kBtwist. We have used the Atomic Force Microscope combined with electrophysiology to study the dynamics of single voltage dependent ion channels. This technique provides a resolution of >0.01nm in a kHz bandwidth. I have developed other hardware including the first automated microelectrode puller, a micron sized thermometer and heater and a high speed pressure servo. Some of these devices have been patented by the University of Buffalo and some are in current production. To analyze the reaction kinetics of single molecules, we developed and made publicly available (www.qub.buffalo.edu) a complete software package for Windows that does data acquisition and Markov likelihood analysis. The development was funded by the National Science Foundation, National Institutes of Health and Keck over the last fifteen years, and has been applied to ion channels, molecular motors and the even the sleep patterns of mice. We have taught at UB hands-on course to use the software, and the course was attended by an international group of academic scientists and students, government and industry.

Umesh, Sharma
Sharma, Umesh, MD, PhDAssistant Professor
Email: sharmau@buffalo.edu
Phone: 716-829-2663

Specialty/Research Focus:
Cardiology; Cardiovascular Disease; Internal Medicine; Radiology; Cardiopulmonary physiology; Immunology; Gene Expression; Cardiac pharmacology; Stem Cells

Research Summary:
I am a cardiologist with specialized training in advanced cardiac imaging. I see outpatients at the Heart and Lung Center of Buffalo General Medicine Center (BGMC), and I care for inpatients through the cardiology consult and inpatient services at BGMC. As an advanced imaging cardiologist, I am responsible for developing and advancing the cardiac computed tomography (CT) and magnetic resonance imaging (MRI) programs at the Gates Vascular Institute (GVI) and providing these services to patients. These advanced, noninvasive imaging techniques allow physicians to perform in-depth, 3-D evaluation of the coronary tree, myocardium, heart valves, pericardium and great vessels. These imaging tools allow for the best possible diagnoses and care of patients. My research spans basic science, translational and clinical fields and combines the cross-discipline expertise on magnetic resonance (MR) technology with molecular biology. My overall goal is to study the consequences of ischemia-induced myocardial injury, with a focus on their therapeutic reversal. My research laboratory at UB’s Clinical and Translational Research Center (CTRC) is devoted to the development of novel time-and-tissue-targeted MRI methods for integrative understanding of cardiovascular pathophysiology in preclinical models. We have several interesting research projects, e.g., we have recently discovered that the presence of high-risk plaques in the carotid arteries predict future incidence of myocardial infarction and stroke. The results emphasize that the nature of atherosclerosis and the use of comprehensive non-invasive computed tomography angiography (CTA) will help identify patients who are at higher risk of developing ischemic stroke. These research results will help physicians employ early therapeutic strategies for these high-risk patients. I mentor medical students, residents and fellows both in clinical and research settings, and I precept cardiology fellows at the Heart and Lung Center at BGMC. In addition, I am deeply engaged in furthering the research and clinical education of our house staff. Our trainees have published their research in highly esteemed peer-reviewed journals, and many have routinely presented their work at national and international scientific conferences. I am committed to facilitating the career goals of my mentees while I continue to advance my own career as a clinician, researcher and mentor.