University at Buffalo - The State University of New York
Skip to Content

Faculty Profiles

John, Canty, Jr.
Canty, Jr., John, MDSUNY Distinguished Professor, Albert and Elizabeth Rekate Professor and Chief, Division of Cardiovascular Medicine
Email: canty@buffalo.edu
Phone: 829-2663

Specialty/Research Focus:
Cardiology; Cardiovascular Disease; Apoptosis and cell death; Cardiac pharmacology; Gene therapy; Genomics and proteomics; Molecular Basis of Disease; Stem Cells

Research Summary:
As chief of the Division of Cardiovascular Medicine at UB, I am responsible for the clinical, teaching and research programs related to adult patients with heart disease. I care for patients at the UBMD Internal Medicine practice group in Amherst, the Gates Vascular Institute (GVI) of Buffalo General Medical Center (BGMC) and the Buffalo VA Medical Center (VAMC). My clinical areas of expertise are in diagnosing and caring for patients with coronary artery disease and heart failure. My research group conducts translational studies directed at advancing our mechanistic understanding of cardiac pathophysiology as well as developing new diagnostic and therapeutic approaches for the management of patients with chronic ischemic heart disease. Our ongoing areas of preclinical investigation apply proteomic approaches to identify intrinsic adaptive responses of the heart to ischemia and studies examining the ability of intracoronary stem cell therapies to stimulate endogenous cardiomyocyte proliferation and improve heart function. We also conduct basic and patient-oriented research to understand how reversible ischemia modifies the cellular composition and sympathetic innervation of the heart to help develop new approaches to identify patients at risk of sudden cardiac arrest from ventricular fibrillation. In addition to my laboratory investigation, I serve as the deputy director of the UB Clinical and Translational Research Center (CTRC) and the director of the UB Translational Imaging Center. The Translational Imaging Center offers researchers opportunities to perform multimodality research imaging using PET molecular imaging, high-field magnetic resonance imaging (MRI) and X-ray computed tomography (CT). Our overall goal is to use advanced cardiac imaging to translate new applications between the bench and bedside in order to identify new imaging biomarkers of pathophysiological processes such as chronic myocardial ischemia and cardiac arrhythmogenesis. I am engaged in the cardiology profession at national and international levels, including as former president of the Association of Professors of Cardiology.

Joseph, Izzo
Izzo, Joseph, MDProfessor and Chief, Clinical Pharmacology
Email: jizzo@buffalo.edu
Phone: (716) 898-5234

Specialty/Research Focus:
Cardiovascular Disease; Internal Medicine; Nephrology; Pathophysiology; Vascular and Interventional Radiology; Cardiac pharmacology

Research Summary:
(1) Role of the sympathoadrenal system in hypertension, postural adaptation, and long-term cardiovascular adaptation (2) Control of regional and systemic blood flow during acute stress responses (3) Mechanisms of stress responses and vasoreactivity, both in vivo and in vitro, including metabolic interactions (4) Cardiovascular drug effects (5) Outcomes of drug therapies

Jahan, Porhomayon
Porhomayon, Jahan, MD, FCCP, FCCMProfessor of Anesthesiology and Critical Care Medicine
Email: jahanpor@buffalo.edu
Phone: 716-862-6079

Specialty/Research Focus:
Anesthesiology; Critical Care Medicine; Cardiac pharmacology

Research Summary:
My clinical practice focuses on the management of critically ill patients, working in intensive care unit at the VAMC. I previously Practiced at the Rochester General Hospital, as the medical director of surgical critical care services.The experience equipped me with a wealth of expertise in caring for individuals from diverse medical and surgical conditions from around the world. I am responsible for the hospital care of patients at VAMC, where I work with anesthesiology, medicine,pulmonary critical care and cardothoracic anesthesia fellows. I provide complete inpatient management of critically adults adults. I enjoy teaching and research components of my faculty role, which include mentoring students, working with pre-med and medical students, and conducting research projects centering on management of critically adult population. I am collaborating with other medical professionals at the VAMC to conduct clinical trials as well as conducting original ressearch in critical care medicine. As of 2014, I am the medical Co-director of the medical intensive care unit and provide frequent consulation for clinicians engaging in translational and clinical research. My research focus mostly is centered on perioperative management of patient with obstructive sleep apnea.

Umesh, Sharma
Sharma, Umesh, MD, PhDAssistant Professor
Email: sharmau@buffalo.edu
Phone: 716-829-2663

Specialty/Research Focus:
Cardiology; Cardiovascular Disease; Internal Medicine; Radiology; Cardiopulmonary physiology; Immunology; Gene Expression; Cardiac pharmacology; Stem Cells

Research Summary:
I am a cardiologist with specialized training in advanced cardiac imaging. I see outpatients at the Heart and Lung Center of Buffalo General Medicine Center (BGMC), and I care for inpatients through the cardiology consult and inpatient services at BGMC. As an advanced imaging cardiologist, I am responsible for developing and advancing the cardiac computed tomography (CT) and magnetic resonance imaging (MRI) programs at the Gates Vascular Institute (GVI) and providing these services to patients. These advanced, noninvasive imaging techniques allow physicians to perform in-depth, 3-D evaluation of the coronary tree, myocardium, heart valves, pericardium and great vessels. These imaging tools allow for the best possible diagnoses and care of patients. My research spans basic science, translational and clinical fields and combines the cross-discipline expertise on magnetic resonance (MR) technology with molecular biology. My overall goal is to study the consequences of ischemia-induced myocardial injury, with a focus on their therapeutic reversal. My research laboratory at UB’s Clinical and Translational Research Center (CTRC) is devoted to the development of novel time-and-tissue-targeted MRI methods for integrative understanding of cardiovascular pathophysiology in preclinical models. We have several interesting research projects, e.g., we have recently discovered that the presence of high-risk plaques in the carotid arteries predict future incidence of myocardial infarction and stroke. The results emphasize that the nature of atherosclerosis and the use of comprehensive non-invasive computed tomography angiography (CTA) will help identify patients who are at higher risk of developing ischemic stroke. These research results will help physicians employ early therapeutic strategies for these high-risk patients. I mentor medical students, residents and fellows both in clinical and research settings, and I precept cardiology fellows at the Heart and Lung Center at BGMC. In addition, I am deeply engaged in furthering the research and clinical education of our house staff. Our trainees have published their research in highly esteemed peer-reviewed journals, and many have routinely presented their work at national and international scientific conferences. I am committed to facilitating the career goals of my mentees while I continue to advance my own career as a clinician, researcher and mentor.

Satpal, Singh
Email: singhs@buffalo.edu
Phone: (716) 829-2453

Specialty/Research Focus:
Behavioral pharmacology; Cardiac pharmacology; Ion channel kinetics and structure; Membrane Transport (Ion Transport); Molecular Basis of Disease; Neurobiology; Neuropharmacology; Signal Transduction; Transgenic organisms

Research Summary:
With over 400 genes coding for them in humans, ion channels play a significant role in most physiological functions. Drug-induced channel dysfunction often leads to a variety of disorders and results in significant incidence of serious injury and death. We investigate molecular mechanisms underlying neurodegenerative disorders and cardiac arrhythmias induced by ion channel dysfunction arising from genetic factors and/or drug interactions. The tools used for these investigations include genetic, electrophysiologic, pharmacologic, molecular and cell culturing methods. Preparations used for experiments include Drosophila as a genetic model system, and human cell lines expressing human ion channels that play an important role in critical-to-life functions including cardiac rhythm, respiration and the central nervous system.