Reflected in the Eyes
Gliaoma assessment tool can track MS activity

Magnetic resonance imaging (MRI) of the brain is the gold standard for monitoring the progression of multiple sclerosis (MS), but it is expensive and comes with limitations, one of which is the inability to assess fully the extent of loss of neurons.

“MRI has advanced our ability to measure tissue injury in MS, but the technology cannot specifically measure changes in axonal integrity,” says Bianca Weinstock-Guttmann, MD, the study’s corresponding author and associate professor of neurology in the Jacobs Neurological Institute (JNI), which is UB’s Department of Neurology.

“OCT may be helpful in monitoring disease progression, but also could represent a potential sensitive tool or outcome measure for future trials using neuroprotective therapeutic interventions. It is considered a reliable and objective technique for capturing loss of retinal ganglion cell axons in early glaucoma and in other forms of optic neuropathy.” Optic neuropathy (ON) is the initial presenting sign in 20 to 25 percent of MS patients.

Weinstock-Guttmann notes that the retinal nerve fiber layer (RNFL) can be assessed by OCT strongly associated with MRI findings of brain atrophy and lesion volume, says Weinstock-Guttmann.

“Furthermore, we found a negative correlation between average RNFL thickness (average of both eyes) and disability, as assessed by the Expanded Disability Status Scale, the gold standard measure used in MS.”

“The results demonstrate that OCT can be an excellent patient monitoring technique, because the decrease in RNFL thickness reflects inflammatory and neurodegenerative components of MS,” she explains. “Further studies are needed to assess and validate OCT measures versus MRI measures and to delineate the role of OCT in patients with relaxing and progressive forms of MS.”

By Lois Baker

Optical coherence tomography may be helpful in monitoring disease progression, but also could represent a potential sensitive tool or outcome measure for future trials using neuroprotective therapeutic interventions.

Premature Birth, an Age-Old Problem

In the 21st century, human tissue can be generated from stem cells and severed limbs are successfully reattached, while the physiological processes governing life’s most fundamental event, childbirth labor, remain a medical mystery.

Identifying the molecular bases of changes in uterine muscle activity during pregnancy offers opportunities for rational drug design for the pharmacological treatment of preterm labor,” says Bett. “Therapeutic interventions that target earlier steps in parturition should prove more effective in delaying birth than currently used agents, which have only limited effectiveness.

“A fundamental problem in developing therapeutic interventions for preterm labor,” Bett continues, “is that the molecular bases of the mechanisms involved in parturition are unknown.”

“Identifying the molecular bases of changes in uterine muscle activity during pregnancy offers opportunities for rational drug design for the pharmacological treatment of preterm labor,” says Bett. “Therapeutic interventions that target earlier steps in parturition should prove more effective in delaying birth than currently used agents, which have only limited effectiveness.”

Uterine contraction, like all smooth-muscle contraction, is primarily an electromechanical event. Although hormonal and biochemical changes play a vital role in regulating and developing conditions leading to labor, she says, the speed and coordination of a process called excitation-contraction coupling in uterine muscle tissue indicates that the short-term signals for contraction are carried by ion channels.

Excitation-contraction coupling is a term used in muscle physiology that describes the process of converting an electrical stimulus (a nerve impulse) to a mechanical response (muscle-fiber contraction), Bett explains, and ion channels are proteins that act as pores in a cell membrane, permitting selective passage of potassium, sodium and calcium molecules in and out of the cell. This process of ion exchange produces and regulates electrical current.

“Spontaneous premature labor must therefore result from a perturbation in the normal timing and regulation of the electromechanical profile of the uterus,” says Bett.

“Efficient and well-timed excitation-contraction requires two equally important components: an excitatory action to initiate an influx of ions into nerve cells and subsequently contraction, and a relaxing action to return the membrane to the resting state, allowing ions to exit. This whole process is called regularization.”

“Without adequate and timely regularization,” notes Bett, “the excitation-contraction coupling sequence will become dysfunctional, leading to abnormal contraction.”

Bett has shown in preliminary data that ion channel expression changes 150-fold during gestation. She will study these changes during pregnancy by comparing uterine muscle tissue obtained from non-pregnant women through hysterectomy with uterine tissue from women whose babies were delivered by Caesarean section.
Adverse Effects

Celebrex, a popular arthritis drug that blocks pain by inhibiting an enzyme known as COX-2, has been shown in laboratory studies to induce arrhythmia, or irregular beating of the heart, via a novel pathway unrelated to its COX-2 inhibition.

The adverse effect arising from this unexpected mechanism definitely needs to be studied more closely because the potassium channels inhibited by the drug are present in heart, brain and many other tissues in the human body.

The adverse effect arising from this unexpected mechanism definitely needs to be studied more closely because the potassium channels inhibited by the drug are present in heart, brain and many other tissues in the human body.

By Louis Baker

The research was supported by grants from the National Science Foundation to Singh and Randall D. Shortridge, PhD, UB assistant professor of biological sciences, to analyze the basic properties of potassium channels. Aware that COX-2 inhibitors had been shown to produce cardiovascular side effects, the researchers first tested whether Celebrex would affect the heart in fruit flies, a good animal system for studies on the human heart.

“When we found an effect on the fly heart, we began looking for the underlying mechanism,” recounts Singh. “We searched the fly genome and were surprised to find that these flies don’t have cyclooxygenases, the enzymes targeted by Celebrex. Because the main effect of the drug in our study was induction of arrhythmia, and arrhythmia is often the result of ion-channel dysfunction,” he continues, “we examined the drug’s effect on potassium channels and other ion channels in their models and were struck by the strong inhibition of the potassium channels.”

The researchers now are examining the underlying molecular mechanisms responsible for the drug’s action and its effect on other ion channels that play a prominent role in setting the rhythm of the heart.

“We are trying to determine whether the drug binds directly to the channels or to some other molecule, and if it acts by blocking the pore of the channel through which potassium ions travel or by some other mechanism,” Singh says.

Roman V. Fedorov, a doctoral student working in Singh’s lab, is first author on the paper described above. Ilja G. Berim, MD, research scientist in the UB Department of Medicine, also is a study author, and Malcolm Slaughter, PhD, UB professor of physiology and biophysics, made significant contributions to the research.

UB researchers have studied the condition for more than 10 years and have developed these animal models, which can “tell” the researchers if they are experiencing tinnitus.

“For many years it was thought that the buzzing or ringing sounds heard by people with tinnitus originated in the ear,” says Savi. “But by using positron emission tomography [PET scanning] to view the brain activity of people with tinnitus at UB, we’ve been able to show that these phantom auditory sensations originate somewhere in the brain, not in the ear. This has changed the whole research approach.”

Savi and colleagues discovered that when the brain’s auditory cortex begins receiving diminished neural signals from the cochlea (the hearing organ) due to injury or age, the auditory cortex “turns up the volume,” increasing weak neural signals from the cochlea. Increasing the volume of these weak signals may be experienced as the buzzing, ringing or hissing characteristic of tinnitus.

Over the past decade, Savi’s team has developed the animal models, allowing the researchers to explore the neurophysiological and biological mechanisms associated with tinnitus, the major focus of this new study. Ed Lobarinas, PhD, and Wei Sun, PhD, in the Department of Communicative Disorders and Sciences, developed the models.

One of the major goals of the project is to try to identify the neural signature of tinnitus—what aberrant pattern of neural activity in the auditory cortex is associated with the onset of tinnitus. In another study phase, the researchers will assess neural activity throughout the entire brain using a radioactive tracer, fluorodeoxyglucose (FDG), which is taken up preferentially in regions of the brain that are highly active metabolically.

The third phase of the study involves the use of potential therapeutic drugs to suppress salicylate or noise-induced tinnitus. In early studies, the researchers were able to modulate some ion channels with one unique compound and were able to completely eliminate aspirin-induced tinnitus using the highest doses of the compound. This phase involves collaboration with scientists at NeuroSearch Pharmaceuticals in Denmark.

Tracking Tinnitus

Study explores where phantom auditory sensations originate

For the more than 50 million Americans who experience the phantom sounds of tinnitus—ringing in the ears that can range from annoying to debilitating—certain well-trained rats may be their best hope for finding relief.

The research will take place at the Center for Communicative Disorders and Hearing and Deafness, part of the Department of Nuclear Medicine and from the National Science Foundation to Singh and Randall D. Shortridge, PhD, UB assistant professor of biological sciences, to analyze the basic properties of potassium channels. Aware that COX-2 inhibitors had been shown to produce cardiovascular side effects, the researchers first tested whether Celebrex would affect the heart in fruit flies, a good animal system for studies on the human heart.

“When we found an effect on the fly heart, we began looking for the underlying mechanism,” recounts Singh. “We searched the fly genome and were surprised to find that these flies don’t have cyclooxygenases, the enzymes targeted by Celebrex. Because the main effect of the drug in our study was induction of arrhythmia, and arrhythmia is often the result of ion-channel dysfunction,” he continues, “we examined the drug’s effect on potassium channels and other ion channels in their models and were struck by the strong inhibition of the potassium channels.”

The researchers now are examining the underlying molecular mechanisms responsible for the drug’s action and its effect on other ion channels that play a prominent role in setting the rhythm of the heart.

“We are trying to determine whether the drug binds directly to the channels or to some other molecule, and if it acts by blocking the pore of the channel through which potassium ions travel or by some other mechanism,” Singh says.

Roman V. Fedorov, a doctoral student working in Singh’s lab, is first author on the paper described above. Ilja G. Berim, MD, research scientist in the UB Department of Medicine, also is a study author, and Malcolm Slaughter, PhD, UB professor of physiology and biophysics, made significant contributions to the research.

UB researchers have studied the condition for more than 10 years and have developed these animal models, which can “tell” the researchers if they are experiencing tinnitus.

“These scientists now have received a $2.9 million, five-year grant from the National Institutes of Health to study the brain signals responsible for creating the phantom sounds, using the animal models, and to test potential therapies to quiet the noise. The research will take place at the Center for Hearing and deafness, part of the Department of Communicative Disorders and Sciences in the College of Arts and Sciences. Richard Savi, PhD, director of the center, is principal investigator. Scientists from the Department of Nuclear Medicine and from the present in heart, brain and many other tissues in the human body.

By Louis Baker

The adverse effect arising from this unexpected mechanism definitely needs to be studied more closely because the potassium channels inhibited by the drug are present in heart, brain and many other tissues in the human body.

By Louis Baker

The research was supported by grants from the National Science Foundation to Singh and Randall D. Shortridge, PhD, UB assistant professor of biological sciences, to analyze the basic properties of potassium channels. Aware that COX-2 inhibitors had been shown to produce cardiovascular side effects, the researchers first tested whether Celebrex would affect the heart in fruit flies, a good animal system for studies on the human heart.

“When we found an effect on the fly heart, we began looking for the underlying mechanism,” recounts Singh. “We searched the fly genome and were surprised to find that these flies don’t have cyclooxygenases, the enzymes targeted by Celebrex. Because the main effect of the drug in our study was induction of arrhythmia, and arrhythmia is often the result of ion-channel dysfunction,” he continues, “we examined the drug’s effect on potassium channels and other ion channels in their models and were struck by the strong inhibition of the potassium channels.”

The researchers now are examining the underlying molecular mechanisms responsible for the drug’s action and its effect on other ion channels that play a prominent role in setting the rhythm of the heart.

“We are trying to determine whether the drug binds directly to the channels or to some other molecule, and if it acts by blocking the pore of the channel through which potassium ions travel or by some other mechanism,” Singh says.

Roman V. Fedorov, a doctoral student working in Singh’s lab, is first author on the paper described above. Ilja G. Berim, MD, research scientist in the UB Department of Medicine, also is a study author, and Malcolm Slaughter, PhD, UB professor of physiology and biophysics, made significant contributions to the research.

UB researchers have studied the condition for more than 10 years and have developed these animal models, which can “tell” the researchers if they are experiencing tinnitus.

“These scientists now have received a $2.9 million, five-year grant from the National Institutes of Health to study the brain signals responsible for creating the phantom sounds, using the animal models, and to test potential therapies to quiet the noise. The research will take place at the Center for Hearing and deafness, part of the Department of Communicative Disorders and Sciences in the College of Arts and Sciences. Richard Savi, PhD, director of the center, is principal investigator. Scientists from the Department of Nuclear Medicine and from