Photo illustration of cancer biosensor.

Photo illustration: UB researchers have developed a portable tool that is capable of spotting cancer biomarkers from a blood sample.

Research Leads to Tool for Portable Cancer Test

Published November 1, 2018 This content is archived.

story based on news release by cory nealon

Research by Yun Wu, PhD, assistant professor of biomedical engineering, has led to a cancer-spotting tool that health care providers could eventually use in areas that lack hospitals, clinics and other treatment centers.

“Preliminary tests show our system is about as effective as the diagnostic tests that many hospitals use. ”
Assistant professor of biomedical engineering
Print

Capable of Spotting Cancer From Blood Sample

The tool — described in a pair of research papers published in IEEE Journal of Selected Topics in Quantum Electronics and ACS Sensors — is based upon a unique gold biosensor the research team created. When paired with a computer or smartphone and other inexpensive tools, the system is capable of spotting cancer biomarkers from a blood sample.

Early diagnosis of cancer greatly improves the odds of successful treatment. Yet many people — especially in developing countries — lack access to facilities to detect the disease. This tool can address that need.

“Preliminary tests show our system is about as effective as the diagnostic tests that many hospitals use. We’re hoping to refine the system and get it into the hands of people who need it the most, because the earlier we detect cancer, the better the treatment outcomes are,” says Wu, co-lead author of the studies.

“Smartphones and computers are increasingly common in places where basic health care is not. Our system takes advantage of that. We’ve designed a simple yet effective cancer screening system that we believe can eventually be deployed to areas that need it most,” says co-lead author Qiaoqiang Gan, PhD, associate professor of electrical engineering in UB’s School of Engineering and Applied Sciences.

Gold Biosensor Used for Detection

To test the system, researchers mounted the gold biosensor to a glass slide. They then placed blood samples from lung cancer patients on top of the biosensor. Next, they shined an LED light onto the sample and biosensor.

The blood contains tiny organic particles called exosomes, which contain lung cancer biomarkers. These biomarkers bind to the biosensor and cause the intensity of the light to change.

By measuring the change of the light intensity before and after applying the blood sample, researchers can detect the biomarkers. This type of sensing is known as surface plasmon resonance, or SPR sensing.

Smartphone Camera Offers Real-Time Imaging

In experiments with a smartphone, researchers mounted the biosensor to the phone’s camera. The system provided real-time imaging of exosomes containing epidermal growth factor receptor, a protein commonly found in non-small cell lung cancer patients that can be used as a biomarker for screening and early detection.

The system was also capable of detecting another biomarker called programmed death-ligand 1 (PD-L1), which is a protein that can stop the immune system from attacking cancer cells. Doctors measure PD-L1 levels in lung cancer patients to assess the effectiveness of a checkpoint inhibitor treatment, a new type of immunotherapy.

Overall results show the system is comparable in sensing accuracy to common cancer diagnostic tests, such as enzyme-linked immunosorbent assay.

There are several advantages to the new system. Perhaps most helpful, researchers say, is the system’s small size, its ease of operation and its relatively low fabrication cost compared to existing diagnostic tools that health care providers use. The system’s portability makes it ideal for areas that lack access to health care services, they say.

Wu’s Laboratory Involved in Research

Grace Dy, MD, associate professor of medicine in the Division of Hematology/Oncology, is a co-author.

Three co-authors are associated with Wu’s laboratory. Yunchen Yang is currently working in the lab. Chang Liu, PhD, and Maxwell Eisenbaum, formerly worked in the lab.

Three other co-authors are associated with Gan’s lab. Nan Zhang is currently working in the lab. Dengxin Ji, PhD, and Xie Zeng, PhD, formerly worked in the lab.

Other UB co-authors are: Josep M. Jornet, PhD, assistant professor of electrical engineering in the School of Engineering and Applied Sciences; Mary E. Reid, PhD, professor of oncology at Roswell Park Comprehensive Cancer Center and research associate professor in the School of Public Health and Health Professions.

Xiaodong Gu, MD, attending physician in the Department of General Surgery at Huashan Hospital, affiliated to Fudan University in China, is also a co-author.

The research was supported by the National Science Foundation’s Division of Industrial Innovation and Partnerships and the National Institutes of Health.