Kwang W. Oh, PhD, leads a team of researchers that is bringing the concept of “lab on a chip” closer to reality.

Researchers Help Bring Us Closer to Coin-Sized Medical Labs

Published February 6, 2018 This content is archived.

story based on news release by cory nealon

A team of researchers led by Kwang W. Oh, PhD, associate professor of biomedical engineering and electrical engineering, has fabricated a chip that uses two different types of force — capillary- and vacuum-driven — to manipulate how fluids travel in micro- and nanosized channels.

“The chip could become the basis for faster, more efficient and reliable lab on a chip devices. It puts us closer to using such devices where medical labs are lacking, such as the developing world, battlefields and even our homes. ”
Associate professor of biomedical engineering and electrical engineering
Print

Medical Lab Could Fit on Chip the Size of Small Coin

The idea — shrinking a medical lab onto a chip the size of a small coin — is known as “lab on a chip.” Using a hand-held device, a practitioner would be able to draw blood from a patient, and seconds later the device would provide in-depth medical information about the patient.

It may sound like something from science fiction, but it’s coming closer to reality. Obstacles still remain; among them is finding an efficient and reliable way to mix and move blood and other fluids through the chip’s tiny valves and pumps.

A new study, appearing on the cover of the Jan. 21 edition of the journal Lab on a Chip — which is published by the Royal Society of Chemistry — moves the scientific community closer to solving the problem.

Device Could Be Used on Battlefields, in the Home

The advancement solves a vexing issue, the researchers say, because in such devices, when blood is mixed with a reagent to produce a biological and/or chemical reaction, the pressure difference between the two fluids often causes them to flow backward instead of into the desired channel.

“It’s kind of like plumbing; we’re moving fluids around and dealing with different pressures and flows. Only we’re doing it on a microchip, as opposed to a house,” said Oh, the study’s lead author. “The chip could become the basis for faster, more efficient and reliable lab on a chip devices. It puts us closer to using such devices where medical labs are lacking, such as the developing world, battlefields and even our homes.”

Chip Requires No External Sources of Power

In a series of experiments, the research team showed how its chip was able to accurately decipher the eight blood types based upon the time it takes for different blood types to flow through the chip. For example, when mixed with a certain antibody, Type A blood will thicken and flow slower.

Oh says the device could be used for other biological and chemical assays. What’s more, the new chip requires no sensors or external sources of power. That’s key for medical device manufacturers, which are searching for ways to inexpensively produce disposable lab on a chip products.

His four co-authors are also associated with UB. Anyang Wang, Domin Koh and Philip J. Schneider are doctoral candidates in electrical engineering, while Yaguang Zhai earned a master’s degree in electrical engineering in 2017.

The research was partially supported by grants from the National Science Foundation Industry-University Cooperative Research Centers Program and Qualcomm Incorporated.