Associate Professor
Department of Pharmacology and Toxicology
Jacobs School of Medicine & Biomedical Sciences
Molecular and Cellular Biology; Neurodegenerative disorders; Signal Transduction; Toxicology; Transcription and Translation
My lab studies the receptor signaling mechanisms for a family of neurotrophic factors that includes ciliary neurotrophic factor (CNTF), leptin, interferon gamma, and cardiotrophin-1. These factors use the Jak/STAT pathway to regulate neuronal survival, development and response to trauma. Our interests are in how activity of the receptors and their pathway components are regulated. Currently this has focused on the impact of cellular oxidative stress on the inhibition of Jak tyrosine kinase activity. Increases in oxidative stress in neurons result in the blockade of not only CNTF family factor effects, but of many other cytokines that also use the Jak/STAT pathway for signaling such as interferons and interleukins. Non-nerve cells appear resistant to these effects of oxidative stress.
Ongoing projects include testing the theory that environmental contaminants known to increase oxidative stress in cells may promote neurodegenerative diseases by inhibiting growth factor signaling. We have been studying the effects of certain heavy metals (cadmium & mercury) and pesticides (e.g. rotenone) on nerve cells in culture to determine the molecular basis for Jak inhibition.
Another examines a possible role of oxidative stress in obesity. This study tests the hypothesis that the loss of the ability of the hormone leptin to regulate metabolism and appetite during obesity is a result of oxidative reactions that inhibit Jak-mediated signaling in the hypothalamus and other brain regions.