Associate Professor
Jacobs School of Medicine & Biomedical Sciences
Metalloenzymes; Protein Function and Structure; Vitamins and Trace Nutrients
Cytochrome P450 enzymes are powerful catalysts that play integral roles in biochemical pathways throughout nature. In mammals, members of this class of enzyme serve a variety of functions that include drug metabolism, steroid biosynthesis and the activation and deactivation of vitamin D, to name a few. Cytochrome P450 enzymes are also heavily involved in bacterial and plant biochemistry.
The overall goal of our research is to use a combination of biochemical and biophysical tools to investigate structure and function in class I cytochrome P450 enzymes, thereby contributing toward an understanding of how this important class of enzymes work as well as informing the design of novel therapeutics.
This goal is divided between two efforts.
First, we are interested in characterizing the substrate and redox partner interactions of the enzymes CYP27B1 and CYP24A1, the P450s responsible for activating and deactivating vitamin D. Describing the interaction between CYP24A1 and vitamin D has the potential to illuminate how the vitamin D structure becomes modified at a particular site. This insight could impact the design of vitamin D analogs with benefits for an array of human health conditions, including bone density disorders, diabetes and chronic kidney disease (CKD).
A parallel effort in our group is a structural study of the enzyme CYP121 of Mycobacterium tuberculosis, the disease-causing pathogen in tuberculosis (TB). The resurgence of standard TB and the rise of drug-resistant forms of TB are quickly becoming a global pandemic, with TB claiming more lives worldwide in 2014 than HIV. CYP121 is essential for survival of the bacterium and thus has emerged as one of the more promising antitubercular drug targets.
Students and postdocs joining my lab will be exposed to a multidisciplinary set of research tools, including expression and purification of recombinant membrane proteins, nuclear magnetic resonance, protein X-ray crystallography and P450 ligand binding assays.