Professor of Biochemistry; Director of the Genetics, Genomics & Bioinformatics Graduate Program; Director, Western New York Stem Cell Culture and Analysis Center (WNYSTEM)
Jacobs School of Medicine & Biomedical Sciences
Bioinformatics; Cell growth, differentiation and development; Gene Expression; Genomics and proteomics; Molecular and Cellular Biology; Molecular Basis of Disease; Molecular genetics; Neurobiology; Stem Cells; Transgenic organisms
My research goal is to gain a better understanding of how proteins that interact with DNA regulate RNA transcription, DNA replication and metazoan development. I mentor undergraduate and graduate students in my lab; we focus on the structure and function of the Nuclear Factor I (NFI) family of site-specific DNA binding proteins, and we are investigating their roles in development. Our work has been made possible by our development of loss-of-function mutations of the NFI genes in the mouse and C. elegans.
We are addressing four major questions in my laboratory and in collaboration with a number of talented collaborators: What is the structure of the NFI DNA-binding domain? How does NFI recognize and interact with DNA? Does NFI change the structure of DNA when it binds? What proteins interact with NFI to stimulate RNA transcription and/or DNA replication?
These research questions are explored in my lab through two major projects focused on the role of NFIB in lung development and the role of NFIX in brain development.
When NFIB is deleted from the germline of mice the animals die at birth because their lungs fail to mature normally. This provides a good model for the problems that occur with premature infants, whose lungs also fail to mature normally. We are using this model to determine how NFIB promotes lung maturation with the goal of being able to stimulate this process in premature infants.
In our NFIX knockout animals, the brains of the animals are actually larger than normal and contain large numbers of cells in an area known to be the site of postnatal neurogenesis. We have evidence that NFIX may regulate the proliferation and differentiation of neural stem cells, which produce new neurons throughout adult life. Our aim is to understand the specific target genes that NFIX regulates in the adult brain to control this process of neurogenesis.