Arteries and Veins of patients with CVST.

These images show the arteries (red) and veins (green) in the brain of a recent patient with CVST. Before surgery (top images), the arteries (red) are the dominant color but the veins (green) are hard to see because they are so severely occluded. After surgery (bottom images), the veins (in green) are clear, not occluded and are easy to see. Credit: UB Neurosurgery. 

Finding New Ways to Attack Clots in Deep Veins of Brain

Published September 15, 2022

Based on News Release by Ellen Goldbaum

The Jacobs School of Medicine and Biomedical Sciences team that a decade ago helped usher in a new era in acute stroke treatment has turned its innovative approach to addressing the rare but potentially deadly phenomena when multiple blood clots strike deep in the veins of the brain.

Condition is Cerebral Venous Sinus Thrombosis

“Typically, when we think of stroke, we think about blockages in the arteries to the brain. But blockages can also happen in the deep veins of the brain.”
L. Nelson Hopkins III professor and chair of the Department of Neurosurgery
Levy, Elad.

Elad I. Levy, MD

“Typically, when we think of stroke, we think about blockages in the arteries to the brain,” says Elad I. Levy, MD, the L. Nelson Hopkins III professor and chair of the Department of Neurosurgery. “But blockages can also happen in the deep veins of the brain.”

The condition is called cerebral venous sinus thrombosis (CVST), where a blood clot forms in the brain’s venous sinuses, preventing blood from draining out of the brain.

“In these very rare cases, when multiple veins are involved, the blood coming into the brain can’t drain out,” Levy says. “This causes the brain to swell in the skull, which can lead to hemorrhage.”

When a single clot in the brain is involved, the standard of care is to treat the patient with blood thinners. But, Levy says, cases of multiple clots in the veins of the brain require a more aggressive approach.

“If the patient falls into a coma, then you need to act fast and mechanically pull those clots out of the brain veins,” he says. “The faster you get in there to open up the vessels, the better the patient will do.”

Venous Thrombectomy Used on COVID Patients

When multiple major veins in the brain are obstructed, a phenomenon the Jacobs School team has seen more than a dozen times since 2009, including recently with COVID-19, the neurosurgeons have used mechanical thrombectomy to literally suck the clot out of the vein. The procedure is called venous thrombectomy.

“Venous thrombectomy is not truly standardized yet,” says Rosalind Lai, MD, who recently joined UB Neurosurgery as a fellow after completing her medical education at Harvard Medical School and residency at Brigham and Women’s Hospital. “There’s still active research into when and how it can be helpful for patients.”

And while Levy stresses that these phenomena are exceedingly rare, the Jacobs School team has treated two such cases in the past month in young, otherwise healthy individuals who had recently been infected with SARS-CoV2.

One of those patients continued to rapidly decline, even after several hours on a blood thinner.

“In that case, we really had no choice but to do the procedure,” says Lai, who assisted Levy in the operation. “The procedure went really smoothly. Dr. Levy is beyond words in terms of what he can do. He got in there very quickly and took the clot out.”

After the procedure, CT images showed that all the occluded veins had been opened up.

“And clinically, over the next few days, the patient continued to improve,” Lai says. “It was remarkable to see how this procedure made for such a life-changing event for this individual. Her case shows that there’s a definite need for more study on indications for venous thrombectomy. We need to be good at selecting the right patients for the procedure. She was certainly a great candidate for this.”

Pioneering New Techniques Since 1990s

“This is the pivot point with stroke,” says Levy, medical director of neuroendovascular services at Gates Vascular Institute and co-director of its Stroke Care Center“Learning how to treat vascular disease from the venous side versus the arterial side is the next frontier.”

It’s a frontier that the team is well-suited to explore.

“Whether it’s finding ways to expand the time window for treatment or adapting techniques from other disciplines, the mission of the Jacobs School’s Department of Neurosurgery has been to explore powerful innovations that will help more patients get back to normal life and function,” says Allison Brashear, MD, MBA, vice president for health sciences and dean of the Jacobs School.

Led by L. Nelson Hopkins, MD, SUNY Distinguished Professor and former chair of the UB Department of Neurosurgery, the team began pioneering new techniques back in the 1990s, using minimally invasive stroke treatments. These treatments take advantage of the body’s circulation system by threading micro-thin devices through an artery in the groin to reach blocked vessels in the brain, where they are then treated with stents.

Despite initial resistance to those innovations, the field has embraced them. Mechanical thrombectomy to remove arterial clots is now the established standard of care for certain types of acute stroke. The Jacobs School team is now using a similar minimally invasive approach to treat multiple blockages in the veins of the brain.

That mindset, focused on finding more ways to intervene even in the most severe situations, is again at work with the CVST cases, says Levy, who completed his fellowship under Hopkins in 2003, joined the UB faculty in 2004 and was named chair of neurosurgery in 2013.

“The ethos, the culture among Jacobs School neurosurgeons, is to push the envelope, to expand the landscape of stroke intervention, to develop and implement novel technologies to continue to provide cutting-edge care for increased patient populations,” says Levy, who is president of UB Neurosurgery, the neurosurgery practice plan of UBMD Physicians’ Group.

Utilizing Advancements in 3D Printing

Strong collaborations with the Endovascular Devices and Imaging Lab in the Canon Stroke & Vascular Research Center, located upstairs from the GVI, provide the neurosurgeons a critical tool in exploring how to treat endovascular disease including CVST.

Led by Ciprian N. Ionita, PhD, assistant professor of biomedical engineering, the center focuses on creating 3D-printed phantoms of the body’s complex circulatory network so that surgeons can optimize their procedures before they head into the operating room.

“We subject all the devices to different patient anatomies in 3D-printed phantoms to see which one is better for a particular task,” he explains. “You can evaluate them in animal models, but those don’t give you the ability to experience human anatomy, which can be very different in some people. There are these very tortuous pathways that have to be navigated all the way to where the clot is. You need to optimize the techniques in order to pull out those clots.”

Advances in the stents themselves are also playing a role, advances that in some cases are a direct result of the collaboration the Jacobs School team at the GVI has with the Jacobs Institute (JI), a nonprofit organization whose mission is to accelerate the development of next-generation technologies in vascular medicine.

The JI is located just upstairs from where the UB neurosurgeons perform the surgeries in the GVI/Clinical and Translational Research Center building that was specifically constructed to promote these kinds of collaborations between scientists, engineers and surgeons.

“We work very closely with the research engineers and scientists at the JI to provide feedback from these cases in real time, so engineers can continue to work with the device companies to create second- and third-generation devices, making them bigger, longer and more supple,” Levy says.

“The technology is evolving, so now we can get bigger tubes farther and deeper into the brain,” Levy adds. “Stents are being made out of novel polymers, which allows them to be more flexible so they are better able to navigate and wind around the twists and turns of human vascular anatomy.”

Suction catheters are now as wide as the circumference of a pen or even a marker, Levy explains, which in some cases is double the diameter of earlier devices, making them much more powerful.

“The bigger the tube the greater is the suction power to get these massive clots out of there,” he says. “There is a lot of science and technology advancing these tools for stroke intervention. Now we are taking them to use them on the venous side, but they weren’t developed for this. We borrowed them from cardiology and other disciplines, and are adapting them.”

“Our decades of experience in thrombectomy and in brain venous anatomy coupled with the sheer volume of neurointerventions that we do has resulted in UB Neurosurgery and the GVI becoming a center to which hospitals around the world refer their patients suffering from complex neurovascular disease,”  Levy adds.