Jennifer A. Surtees, PhD, is spearheading a collaborative effort to track the genomics of COVID-19 in Western New York.

Predicting the Path of COVID-19 From Wuhan to WNY

Published October 21, 2020

Jennifer A. Surtees, PhD, associate professor of biochemistry, is leading an effort to track the genomics of COVID-19 in Western New York.

“The goal with this project is to get a sense of the evolution of the virus, and where it came from ... ”
Associate professor of biochemistry
Print

For more than two decades, her research has focused on genome stability and how mutations threaten that stability and sometimes lead to cancer.

But when the COVID-19 pandemic caused the temporary shutdown of Jacobs School of Medicine and Biomedical Sciences research laboratories last March, Surtees, like many of her colleagues, couldn’t help but consider how her expertise might be applied to the novel coronavirus.

“When the pandemic started, there was a huge surge of interest research-wise into the pandemic and trying to understand how the virus moved around,” says Surtees, co-director of UB’s Genome, Environment and Microbiome Community of Excellence (GEM).

“I had watched the early genome sequencing coming out of Seattle and California, and I thought we could totally do this here,” she says.

Epidemiological Question of Where Virus is Circulating

Surtees contacted UB’s Office of the Vice President for Research and Economic Development to ask if anyone at UB was doing genome sequencing of the SARS-CoV-2 virus isolated from Western New York patients. 

It turned out that no one was.

So she contacted the following people:

All were enthusiastic about Surtees’ idea.

“It’s an interesting epidemiological question to get a sense of where the virus is circulating in our community,” Surtees says.

“Are there versions that are more pathogenic or infectious? I wanted to see what we could learn about the accumulation of mutations in Western New York patients.”

A phylogeny, or evolutionary tree, of SARS-CoV-2 genome sequences from around the world, with Erie County samples shown in red. Each branch point indicates a mutation (or mutations) that distinguish that genome from its parent.

Pairing Genomic Sequencing, Contact Tracing

Surtees explains that rapid genomic sequencing could be used alongside contact tracing to understand transmission of the virus through communities, with the goal of understanding how mutations affect clinical outcomes.

“The goal with this project is to get a sense of the evolution of the virus, and where it came from, to find out its genomic epidemiology, to try and understand the biology of this virus,” Surtees says.

To do that, she worked with researchers in the sequencing core headed by Norma J. Nowak, PhD, executive director of UB’s New York State Center of Excellence in Bioinformatics and Life Sciences, co-director of GEM and a professor of biochemistry.

Donald Yergeau, PhD, associate director of genomic technologies in the Genomics and Bioinformatics Core, established a wet lab pipeline to convert the viral (SARS-CoV-2) RNA genomes derived from patients to DNA through reverse-transcription. The DNA version of the entire genome for each sample was amplified in small fragments and subjected to next-generation sequencing.

Jonathan E. Bard, associate director of bioinformatics, then established a bioinformatics pipeline to compare the sequenced Erie County genomes with the reference genome, the original virus that circulated in Wuhan, China, to identify any changes or mutations in the genome.

“These genome sequences were uploaded into the nextstrain.org platform to assess phylogeny, a kind of family tree for the viral strains in Erie County,” Surtees explains. “This predicts the path the virus may have taken to get from Wuhan to Buffalo.”

Learning How Mutations May Affect Infectivity

By July, Surtees had received Institutional Review Board (IRB) approval to study the first batch of 50 de-identified (anonymous) samples isolated from nasal swabs from Western New York patients with COVID-19.

They retrieved reliable sequence data from 32 of the samples. Now that that pipeline is in place, Surtees and her team can crank through new samples much more quickly.

“Over time, mutations accumulate; that’s just life,” Surtees says, “It happens in all organisms that replicate their genomes. Studying mutations provides us with an ‘evolutionary path.’ It tells us which genomes are more closely related, the same way we can tell how closely people are related by looking at changes in their DNA sequences.” 

“The more mutations that two genomes have in common, the more closely related they are. Genomic sequencing also allows us to see how quickly the virus is mutating.”

“The question is to find out how mutations may affect infectivity of the virus, to find out which, if any, mutations are functional and which are just being carried along,” Surtees adds.

Majority of WNY Samples of European Origin

In the first batch of samples from patients who were sick with COVID-19 in early April, the majority — approximately two thirds — of virus samples from Western New Yorkers seemed to be of European origin, primarily Italy, France and Spain. The remaining third appears to have come through China and Singapore.

Surtees says the data from the samples will prove more valuable if it is possible to gather more information, such as gender, age and travel history, from the patients from whom the samples were taken. Since the samples were de-identified, that will require permission from Erie County and from each individual patient, as well as approval by UB’s IRB.

Recently, the UB researchers received another 200 samples from the Erie County Public Health Laboratory, which they are running through the pipeline as well.  

Surtees has received a small grant from the SUNY Research Foundation to pursue this work, as well as some funding from GEM.

She also has begun collaborating on the COVID-19 research with Amy Jacobs, PhD, a virologist and research associate professor of microbiology and immunology, and with Omer Gokcumen, PhD, an evolutionary biologist and associate professor of biological sciences in the College of Arts and Sciences.

They have applied for external funding to the National Institute of Allergy and Infectious Disease of the National Institutes of Health.