Michal K. Stachowiak, PhD.

Research led by Michal K. Stachowiak, PhD, shows that schizophrenia is a disorder of faulty brain construction that occurs early in development.

Findings Suggest Schizophrenia Originates Early in Pregnancy

Published December 21, 2017 This content is archived.

story based on news release by ellen goldbaum

Research by lead author Michal K. Stachowiak, PhD, has revealed that schizophrenia likely begins toward the end of the first trimester of pregnancy — a finding that opens up a new understanding of the devastating disease and the potential for new treatment possibilities in utero.

“Our research shows that the disease likely starts during the first trimester and involves accelerated cell divisions, excessive migration and premature differentiation of the neuroectodermal cells into neurons. ”
Professor of pathology and anatomical sciences

Disproving Inaccurate Ideas About Schizophrenia

“We now can state that schizophrenia is a disorder of faulty brain construction that occurs early in development, corresponding to the first trimester, and involving specific malformation of neuronal circuits in the cortex,” said Stachowiak, professor of pathology and anatomical sciences.

“This disease has been mischaracterized for 4,000 years,” he said, referring to the first time a disease believed to be schizophrenia was described in the 1550 BC Egyptian medical text, the Ebers Papyrus.

“After centuries of horrendous treatment, including even the jailing of patients, and after it has been characterized as everything from a disease of the spirit or moral values or caused by bad parental influence (a concept that appeared in psychiatric textbooks as recently as 1975), we finally now have evidence that schizophrenia is a disorder that results from a fundamental alteration in the formation and structure of the brain,” Stachowiak said.

Growing Miniature Brain Structures

The research builds on previous work by Stachowiak and his colleagues showing that although hundreds of different genetic mutations may be responsible for schizophrenia in different patients, they all converge in a single faulty genomic pathway called the Integrative Nuclear FGFR 1 Signaling (INFS) pathway, which the researchers reported on earlier this year. 

To find out when and how dysregulation of that pathway occurred and how it affects brain development, Stachowiak — with co-author Ewa K. Stachowiak, PhD, assistant professor of pathology and anatomical sciences — adapted mini-brain technology, growing in vitro miniature brain structures called cerebral organoids. 

“The goal was to, in a sense, recapitulate important stages in brain formation that take place in the womb,” said Stachowiak.

The mini-brain structures were developed from induced pluripotent stem cells (iPSCs). The IPSCs were reprogrammed from the skin cells removed from three controls and four patients with schizophrenia as described in earlier publications by the UB researchers and Kristen J. Brennand of the Icahn School of Medicine at Mount Sinai. 

In the developing embryo, Stachowiak explained, surface cells develop tissues and organs such as skin and brain structures.

“We mimic this process in the laboratory with stem cells, focused specifically on developing the cerebral organoids that resemble the developing human brain in its earliest stages of growth,” he said. Stachowiak’s approach modifies a recently developed protocol for developing early brain structures in vitro.

Discovering Critical Malformations in Mini-Brain Cortex

For a few weeks, the researchers fed the stem cells nutrients, glucose, acids and growth factors that enabled the development and formation of so-called embryoid bodies, which contain the first recognizable stage where tissues begin to differentiate.

With the addition of new composition media, nutrients and growth factors, they grew large enough to eventually develop the tissue out of which the brain forms, called the neuroectoderm.

After being removed, placed on a different substrate and provided with other chemicals and nutrients, these neuroectoderm cells grow under kinetic (constantly moving) conditions, eventually developing into organoids, or mini-brains, containing brain ventricles, a cortex, and a region similar to the brain stem.

“At this stage, we discovered critical malformations in the cortex of the mini-brains formed from the iPSCs of the patients with schizophrenia,” said Stachowiak. That made sense, he added, since increasing evidence has recently linked schizophrenia to abnormal functioning in the cortex, the largest part of the brain, which is responsible for such critical functions as memory, attention, cognition, language and consciousness.

Disease Likely Starts During First Trimester

They found that certain kinds of neural progenitor cells (which later become neurons) were abnormally distributed in the cortex of the mini-brains developed from patients. And while maturing neurons were plentiful in regions outside of the cortex, they were rare in the cortex, Stachowiak explained.

“Our research shows that the disease likely starts during the first trimester and involves accelerated cell divisions, excessive migration and premature differentiation of the neuroectodermal cells into neurons,” he continued. “Neurons that connect different regions of the cortex, the so-called interneurons, become misdirected in the schizophrenia cortex, causing cortical regions to be misconnected, like an improperly wired computer.

The experiments implicate the dysregulation of the INFS mechanism as a trigger for deconstructing gene networks in the developing brain cells of individuals who will later develop the disease.

Aiming to Develop New Brain-Machine Interfaces

“The next step is to investigate how to target the INFS pathway and even other pathways that interact with INFS using drugs or even dietary supplements that could prevent the dysregulation from taking place,” he continued, noting that this kind of supplementation has been effective with disorders such as spina bifida, for example.   

Stachowiak said that the brain organoid model he and his colleagues have developed is already proving applicable to other diseases. The National Science Foundation has funded Stachowiak and Josef M. Jornet, PhD, assistant professor in the School of Engineering and Applied Sciences, to use these models to explore what he calls brain-machine interfaces, treatments that would be useful in eventually guiding the regeneration of brain tissue after trauma or a stroke.

“We are working on combining the organoid research with smart nanophotonic devices to develop a new generation of brain-machine interfaces,” explained Stachowiak. “With this technology, one may eventually be able to control and correct development of cells in complex tissue of the developing brain. An important step toward developing such technologies will be testing them in cerebral organoids or mini-brains to see if they can actually direct and modify the developing brain in real time.”

Research Published in Translational Psychiatry

Cerebral Organoids Reveal Early Cortical Maldevelopment in Schizophrenia — Computational Anatomy and Genomics, Role of FGFR1,” was published Nov. 17 in Translational Psychiatry.

Along with Michal and Ewa Stachowiak, the paper’s co-authors are:

Siddhartha Dhiman and Karthiayani Harikrishnan of the Department of Biomedical Engineering are other co-authors, along with Alexander Dimitri of the State University of New York at Fredonia and Kristen Brennand, PhD, of the Icahn School of Medicine at Mount Sinai.

The research was supported by the New York State Department of Health, the National Science Foundation, the Patrick P. Lee Foundation, the National Institutes of Health and the New York Stem Cell Foundation.

In cerebral organoids generated from stem cells of patients with schizophrenia, (image on the right), disruption in the layers of stem cell (red) surrounding the brain-like ventricles was evident as early as two weeks into the development of the organoids – roughly comparable to the first trimester of pregnancy. Formation of neurons (green) is clearly impaired compared to the control figure.