The images, above on the left, show a 7 Tesla (very strong magnetic field) MRI detector array that’s flexible and wearable. The black and white images on the right show high resolution imaging, 200 µm (micrometers), of isotropic resolution of a human knee, left, and a foot.

UB Researcher Leading Project to Improve MRI Technology

Published November 24, 2020

story based on news release by cory nealon

A Department of Biomedical Engineering faculty member is leading a national team of researchers in the development of advanced MRI techniques.

“We expect this research to have a long-term clinical impact in the management of musculoskeletal system injuries, as well as peripheral vascular diseases, joint/cartilage disorders, and complications associated with diabetes, osteoporosis and rheumatism in humans. ”
SUNY Empire Innovation Professor of biomedical engineering
Print

Funded by a five-year $3.7 million Bioengineering Research Partnership U01 grant from the National Institutes of Health, the team will develop sensitive imaging tools for morphological and functional characterization of ligaments, tendons and bone, which are essential for studying semi-solid and solid connective tissues in health and disease.

Increasingly Becoming Diagnostic Tool of Choice

Xiaoliang Zhang, PhD

MRI has increasingly become the diagnostic tool of choice for evaluation and management of diseases and injuries of the musculoskeletal system and connective tissue, such as ligaments, tendons and bone, primarily due to its ability to provide information on anatomic structure and function in a noninvasive way.

However, modern MRI still has some limitations.

Their ability to show connective tissue is hampered by inadequate sensitivity and the slow process of completing a MRI scan. Semi-solid and solid tissues, including collagen-rich tissues such as calcified ligaments and tendons, as well as periosteum, cortical bone and trabecular bone, provide a weak magnetic resonance signal due to their fast signal decay.

In addition, during the long time it takes to complete a MRI scan, involuntary movements of people negatively affect the clarity of the images, posing a critical challenge in obtaining high-resolution images with diagnostic value.

Developing a Comprehensive Imaging Tool

To address these issues, Xiaoliang Zhang, PhD, a SUNY Empire Innovation Professor of biomedical engineering, is leading a team of researchers — from UB, University of California, Berkeley; Stanford University; University of Minnesota; Cleveland Clinic; and GE Global Research.

UB’s Department of Biomedical Engineering is a joint program of the School of Engineering and Applied Sciences and the Jacobs School of Medicine and Biomedical Sciences.

“Through a synergistic bioengineering research partnership, we will develop advanced flexible and wearable imaging hardware, fast imaging techniques and imaging sequences at the ultrahigh field of 7 Tesla to deliver a comprehensive imaging tool,” Zhang says.

In addition to these technologies, the team will also investigate the use of ultra-short echo time and zero echo time methods, which have shown unparalleled capability to image solid and semi-solid tissues that are normally invisible in MRI scans.

“We expect this research to have a long-term clinical impact in the management of musculoskeletal system injuries, as well as peripheral vascular diseases, joint/cartilage disorders, and complications associated with diabetes, osteoporosis and rheumatism in humans,” Zhang says.

Internationally Renowned Expert in MRI

Zhang is an internationally renowned expert in magnetic resonance imaging and its biomedical applications. He joined UB in 2018 from the University of California, San Francisco (UCSF) and UC Berkeley and UCSF’s Joint Biomedical Engineering Program, where he was professor and director of High Field MR Imaging Technology.

He is a fellow of the American Institute for Medical and Biological Engineering, and has received numerous awards, including the Outstanding Contribution Award from the Overseas Chinese Society for Magnetic Resonance in Medicine, Distinguished Investigator Award from the Academy of Radiology Research in Washington D.C., and the UCSF Award for Established Investigator in Basic and Clinical/Translational Sciences.

Zhang has authored and co-authored over 300 peer-reviewed journal papers, conference papers and book chapters in the field of MRI and its clinical translation. His work has been funded by the National Institutes of Health and other research foundations, with a cumulative total of over $50 million.