These courses include all required courses for the PhD in Pharmacology and Toxicology as well as those commonly taken as electives.
The primary objective of this course is for students to become familiar with the principal, broad questions in protein structural biology and the experimental strategies used to answer them. These strategies include kinetics, specific mutagenesis, and model design and analysis. Specific topics include steady-state and transient kinetics, protein origins of enzyme catalysis, folding pathways and protein design, and protein allostery in the gating function of ion channels.
Familiarizes students with up-to-date concepts and experimental approaches used in the study of eukaryotic gene expression. Focuses on the molecular mechanisms involved in RNA polymerase II (RNAPII) transcription. Specific topics include the structure and function of RNAPII and required auxiliary factors, the molecular mechanisms of transcriptional activation and repression, the coupling of transcriptional elongation with mRNA processing, and specific examples of the role of regulated RNA polymerase II transcription in development and cellular differentiation. Each week, one to two selected papers from the scientific literature are discussed in class, with students taking turns presenting one or two figures and the instructor providing clarification and/or additional questions as appropriate.
This course provides the Graduate Students in the Graduate Neuroscience Program and other life sciences with a comprehensive overview of the principles that control the development and function of the nervous system. These principles require knowledge that cuts across all scientific disciplines. Hence, topics will be team-taught at the molecular, cellular, and systems levels. The course covers the structure and development of the nervous system, formation and function of the synapse, and the general principles of neuronal function. The student is expected to gain 1) the necessary background to pursue in greater depth any selected facet of neuroscience and 2) an appreciation of the beauty and excitement offered by the intellectual challenge posed by analyzing how the nervous system functions. Malcolm Slaughter, PhD, is the course coordinator.
The goal of PMY 503 is to provide graduate students with an in-depth understanding of pharmacological principles as well as the ability to use and apply this information. Topics to be included: pharmacokinetic principles (e.g., absorption, distribution, metabolism, excretion, drug dosing); receptor theory and drug-receptor interactions; non-receptor targets (e.g., enzymes, biologics RNA-based therapy); pharmacogenetics; drug safety; quantifying drug effects; and target engagement and validation. Each topic will be introduced and necessary information provided through didactic lectures; subsequent sessions will focus on the use and application of this information. These sessions will involve a discussion of research papers or research problems using the Socratic Method with the faculty acting as discussion facilitators. For the more quantitative aspects of this course (e.g., pharmacokinetics and the describing of drug effects), quantitative problem-solving will also be used.
PMY 503 is dual-listed with PMY 405, intended for undergraduates, and PMY 511, for pharmacy students. These courses share a central syllabus and include a one-hour recitation tailored to the needs of each group of students.
In this course, you will learn, under supervision, how to evaluate and present original research from biomedical scientific literature. Typically, one to two published papers are presented in a seminar (approximately 50 minutes long). In consultation with the course director, students choose papers to be presented within the general fields of pharmacology and toxicology. A brief question and answer session follows each presentation, involving students and faculty from the Department of Pharmacology and Toxicology.
You will learn to formulate a seminar abstract, deliver work effectively in a seminar, prepare quality slides, use background information well, and evaluate papers’ methods, results and conclusions. Your presentation will also be evaluated on your critical assessment of the presented research, ability to respond to audience questions and extent to which you place the results in a broader context of ongoing research.
The neuropharmacology course will discuss the drug actions on the nervous system. The particular focus of this course will be to provide a description of the cellular and molecular actions of drugs on synaptic transmission. This course will also refer to specific disorders of the nervous systems and their treatment in addition to giving an overview of the techniques used for the study of neuropharmacology.
The course will focus on human diseases involving chronic pain, drugs of abuse, and neurodegeneration (such as Parkinson's and Multiple Sclerosis). The course comprises both lectures and recitation periods which will vary by instructor and are designed to foster class participation, reading of primary literature (as well as textbook reading) and critical evaluation of research data to develop knowledge in the discipline of neuropharmacology.
This course teaches you to prepare a research proposal and is connected to the pharmacology Proposition Exam. You will choose a topic related to your intended thesis work, make a Journal Club presentation on the topic, and present a pre-proposal to the Proposition Examination Committee. You will then write a complete proposal addressing the comments you receive from the Committee, and, on approval of the proposal by the Committee, defend your proposal in an oral examination. Your grade will be based on your performance in the Journal Club presentation, the written proposal and the oral defense of the proposal. To continue in the program, you must receive grade B or better.
An introduction to the basic principles and practice of toxicology, including dose-response and toxicokinetic analysis. We will also cover chemical mutagenesis and carcinogenesis, with an emphasis on understanding mechanisms for these responses. An overview of risk assessment will include quantitative aspects of cancer and non-cancer based risk assessments.
This course takes a systemic approach to toxicology, including developmental toxicology. We will investigate the adverse effects of several classes of chemicals at specific target organs, including the liver, lung and kidney, and the endocrine, nervous, reproductive and immune systems. The course emphasizes understanding the mechanism(s) for the adverse responses of specific agents at a given target site.
The field of structural biology investigates the structure-function relationships of important biological macromolecules at the molecular level. Understanding the interplay between structure and function provides valuable insight into fundamental biological processes that underlie healthy and diseased states. This course is designed to provide students with a structural biology-based view of pharmacology.